Startseite Two novel mitochondrial and chloroplastic targeting-peptide-degrading peptidasomes in A. thaliana, AtPreP1 and AtPreP2
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Two novel mitochondrial and chloroplastic targeting-peptide-degrading peptidasomes in A. thaliana, AtPreP1 and AtPreP2

  • Elzbieta Glaser , Stefan Nilsson und Shashi Bhushan
Veröffentlicht/Copyright: 2. November 2006
Biological Chemistry
Aus der Zeitschrift Band 387 Heft 10_11

Abstract

Two novel metalloendopeptidases in Arabidopsis thaliana, AtPreP1 and AtPreP2, are responsible for the degradation of targeting peptides in mitochondria and chloroplasts. Both AtPreP1 and AtPreP2 contain ambiguous targeting peptides and are dually targeted to both organelles. The proteases also have the capacity to degrade unstructured peptides of up to 65 amino acid residues, but not small proteins. The catalysis occurs in a huge catalytic chamber revealed by the crystal structure of AtPreP1 at 2.1 Å. The enzymes show a preference for basic and small uncharged amino acids or serines at the cleavage sites. Despite similarities in cleavage specificities, cleavage-site recognition differs for both proteases and is context- and structure-dependent. The AtPreP1 and AtPreP2 genes are differentially expressed in Arabidopsis.

:

Corresponding author

References

Adam, Z. and Clarke, A.K. (2002). Cutting edge of chloroplast proteolysis. Trends Plant Sci.7, 451–456.10.1016/S1360-1385(02)02326-9Suche in Google Scholar

Adam, Z., Rudella, A., and van Wijk, K.J. (2006). Recent advances in the study of Clp, FtsH and other proteases located in chloroplasts. Curr. Opin. Plant Biol.9, 234–240.10.1016/j.pbi.2006.03.010Suche in Google Scholar

Arnold, I. and Langer, T. (2002). Membrane protein degradation by AAA proteases in mitochondria. Biochim. Biophys. Acta1592, 89–96.10.1016/S0167-4889(02)00267-7Suche in Google Scholar

Barrett, A., Rawlings, N., and Woessner, J. (1998). Handbook of Proteolytic Enzymes (London, UK: Academic Press).Suche in Google Scholar

Becker, A.B. and Roth, R.A. (1992). An unusual active site identified in a family of zinc metalloendopeptidases. Proc. Natl. Acad. Sci. USA89, 3835–3839.10.1073/pnas.89.9.3835Suche in Google Scholar PubMed PubMed Central

Bedard, J. and Jarvis, P. (2005). Recognition and envelope translocation of chloroplast preproteins. J. Exp. Bot.56, 2287–2320.10.1093/jxb/eri243Suche in Google Scholar PubMed

Bhushan, S., Lefebvre, B., Stahl, A., Wright, S.J., Bruce, B.D., Boutry, M., and Glaser, E. (2003). Dual targeting and function of a protease in mitochondria and chloroplasts. EMBO Rep.4, 1073–1078.10.1038/sj.embor.7400011Suche in Google Scholar

Bhushan, S., Ståhl, A., Nilsson, S., Lefebvre, B., Seki, M., Roth, C., McWilliam, D., Wright J.S., Liberles, A.D., Shinozaki, K., et al. (2005). Catalysis, subcellular localization, expression and evolution of the targeting peptides degrading protease, AtPreP2. Plant Cell Physiol.46, 985–996.10.1093/pcp/pci107Suche in Google Scholar PubMed

Bhushan, S., Johnson, K.A., Eneqvist, T., and Glaser, E. (2006). Proteolytic mechanism of a novel mitochondrial and chloroplastic PreP peptidasome. Biol. Chem.387, 1087–1090.10.1515/BC.2006.134Suche in Google Scholar PubMed

Buchler, M., Tisljar, U., and Wolf, D.H. (1994). Proteinase yscD (oligopeptidase yscD). Structure, function and relationship of the yeast enzyme with mammalian thimet oilgopeptidase (metalloendopeptidase, EP 24.15). Eur. J. Biochem.219, 627–639.Suche in Google Scholar

Caspersen, C., Wang, N., Yao, J., Sosunov, A., Chen, X., Lustbader, J.W., Xu, H.W., Stern, D., McKhann, G., and Yan, S.D. (2005). Mitochondrial Aβ: a potential focal point for neuronal metabolic dysfunction in Alzheimer's disease. FASEB J.19, 2040–2041.10.1096/fj.05-3735fjeSuche in Google Scholar PubMed

Chen, G., Bi, Y.R., and Li, N. (2005). EGY1 encodes a membrane-associated and ATP-independent metalloprotease that is required for chloroplast development. Plant J.41, 264–375.10.1111/j.1365-313X.2004.02308.xSuche in Google Scholar PubMed

Dai, Q.H., Tommos, C., Fuentes, E.J., Blomberg, M.R., Dutton, P.L., and Wand, A.J. (2002). Structure of a de novo designed protein model of radical enzymes. J. Am. Chem. Soc.124, 10952–10953.10.1021/ja0264201Suche in Google Scholar

Danpure, C.J. (1995). How can the products of a single gene be localized in more than one intracellular compartment? Trends Cell Biol.5, 230–238.Suche in Google Scholar

Duckworth, W.C., Bennett, R.G., and Hamel, F.G. (1998). Insulin degradation: progress and potential. Endocr. Rev.19, 608–624.Suche in Google Scholar

Esser, K., Tursun, B., Ingenhoven, M., Michaelis, G., and Pratje, E. (2002). A novel two-step mechanism for removal of a mitochondrial signal sequence involves the mAAA complex and the putative rhomboid protease Pcp1. J. Mol. Biol.323, 835–843.10.1016/S0022-2836(02)01000-8Suche in Google Scholar

Falkevall, A., Alikhani, N., Bhushan, S., Pavlov, P.F., Busch, K., Johnson, K.A., Eneqvist, T., Tjernberg, L., Ankarcrona, M., and Glaser, E. (2006). Degradation of the amyloid β-protein by the novel mitochondrial peptidasome, PreP. J. Biol. Chem. July 18; (Epub ahead of print, DOI 10.1074/jbc.M602532200).10.1074/jbc.M602532200Suche in Google Scholar PubMed

Glaser, E. and Dessi, P. (1999). Integration of the mitochondrial-processing peptidase into the cytochrome bc1 complex in plants. J. Bioenerg. Biomembr.31, 259–274.10.1023/A:1005475930477Suche in Google Scholar

Glaser, E. and Soll, J. (2004). Targeting signals and import machinery of plastids and plant mitochondria. In: Molecular Biology and Biotechnology of Plant Organelles, H. Daniell and C. Chase, eds. (Dordrecht, Netherlands: Springer), pp. 385–418.10.1007/978-1-4020-3166-3_14Suche in Google Scholar

Haussuhl, K., Andersson, B., and Adamska, I. (2001). A chloroplast DegP2 protease performs the primary cleavage of the photodamaged D1 protein in plant photosystem II. EMBO J.20, 713–722.Suche in Google Scholar

Hedtke, B., Borner, T., and Weihe, A. (2000). One RNA polymerase serving two genomes. EMBO Rep.1, 435–440.10.1093/embo-reports/kvd086Suche in Google Scholar PubMed PubMed Central

Johnson, K.A., Bhushan, S., Ståhl, A., Hallberg B.M., Frohn, A., Glaser, E., and Eneqvist, T. (2006). The closed structure of presequence protease prep forms a unique 10.000 Å3 chamber for proteolysis. EMBO J.25, 1977–1986.Suche in Google Scholar

Kambacheld, M., Augustin, S., Tatsuta, T., Muller, S., and Langer, T. (2005). Role of a novel metallopeptidase Mop112 and saccharolysin for the complete degradation of proteins residing in different subcompartmnets of mitochondria. J. Biol. Chem.280, 20132–20139.10.1074/jbc.M500398200Suche in Google Scholar PubMed

Kaser, M. and Langer, T. (2000). Protein degradation in mitochondria. Semin. Cell Dev. Biol.11, 181–190.10.1006/scdb.2000.0166Suche in Google Scholar PubMed

Kaser, M., Kambacheld, M., Kisters-Woike, B., and Langer, T. (2003). Oma1, a novel membrane-bound metallopeptidase in mitochondria with activities overlapping with the m-AAA protease. J. Biol. Chem.278, 46414–46423.10.1074/jbc.M305584200Suche in Google Scholar PubMed

Lensch, M., Herrmann, R.G., and Sokolenko, A. (2001). Identification and characterization of SppA, a novel light-inducible chloroplast protease complex associated with thylakoid membranes. J. Biol. Chem.276, 33645–33651.10.1074/jbc.M100506200Suche in Google Scholar PubMed

Lister, R., Murcha, M.W., and Whelan, J. (2003). The Mitochondrial Protein Import Machinery of Plants (MPIMP) database. Nucleic Acids Res.31, 325–327.10.1093/nar/gkg055Suche in Google Scholar

Lister, R., Chew, O., Lee, M.N., Heazlewood, J.L., Clifton, R., Parker, K.L., Millar, A.H., and Whelan, J. (2004). A transcriptomic and proteomic characterization of the Arabidopsis mitochondrial protein import apparatus and its response to mitochondrial dysfunction. Plant Physiol.134, 777–789.10.1104/pp.103.033910Suche in Google Scholar

Lustbader, J.W., Cirilli, M., Lin, C., Xu, H.W., Takuma, K., Wang, N., Caspersen, C., Chen, X., Pollak, S., Chaney, M., et al. (2004). ABAD directly links Aβ to mitochondrial toxicity in Alzheimer's disease. Science304, 448–452.10.1126/science.1091230Suche in Google Scholar

Moberg, P., Stahl, A., Bhushan, S., Wright, S.J., Eriksson, A., Bruce, B.D., and Glaser, E. (2003). Characterization of a novel zinc metalloprotease involved in degrading targeting peptides in mitochondria and chloroplasts. Plant J.36, 616–628.10.1046/j.1365-313X.2003.01904.xSuche in Google Scholar

Moberg, P., Nilsson, S., Stahl, A., Eriksson, A.C., Glaser, E., and Maler, L. (2004). NMR solution structure of the mitochondrial F1β presequence from Nicotiana plumbaginifolia. J. Mol. Biol.336, 1129–1140.10.1016/j.jmb.2004.01.006Suche in Google Scholar

Neupert, W. and Brunner, M. (2002). The protein import motor of mitochondria. Nat. Rev. Mol. Cell Biol.3, 555–565.10.1038/nrm878Suche in Google Scholar

Nicolay, K., Laterveer, F., and Heerde, W. (1994). Effects of amphipathic peptides, including presequences, on the functional integrity of rat liver mitochondrial membranes. J. Bioenerg. Biomembr.26, 327–334.10.1007/BF00763104Suche in Google Scholar

Pavlov, P.F., Moberg, P., Zhang, X.P., and Glaser, E. (1999). Chemical cleavage of the overexpressed mitochondrial F1β precursor with CNBr: a new strategy to construct an import-competent preprotein. Biochem. J.341, 95–103.10.1042/bj3410095Suche in Google Scholar

Peeters, N. and Small, I. (2001). Dual targeting to mitochondria and chloroplasts. Biochim. Biophys. Acta1541, 54–63.10.1016/S0167-4889(01)00146-XSuche in Google Scholar

Richter, S. and Lamppa, G.K. (1998). A chloroplast processing enzyme functions as the general stromal processing peptidase. Proc. Natl. Acad. Sci. USA95, 7463–7468.10.1073/pnas.95.13.7463Suche in Google Scholar PubMed PubMed Central

Rudhe, C., Chew, O., Whelan, J., and Glaser, E. (2002). A novel in vitro system for simultaneous import of precursor proteins into mitochondria and chloroplasts. Plant J.30, 213–220.10.1046/j.1365-313X.2002.01280.xSuche in Google Scholar

Silva-Filho, M.C. (2003). One ticket for multiple destinations: dual targeting of proteins to distinct subcellular locations. Curr. Opin. Plant Biol.6, 589–595.10.1016/j.pbi.2003.09.008Suche in Google Scholar

Skelton, N.J., Kordel, J., and Chazin, W.J. (1995). Determination of the solution structure of Apo calbindin D9k by NMR spectroscopy. J. Mol. Biol.249, 441–462.10.1006/jmbi.1995.0308Suche in Google Scholar

Small, I., Wintz, H., Akashi, K., and Mireau, H. (1998). Two birds with one stone: genes that encode products targeted to two or more compartments. Plant Mol. Biol.38, 265–277.10.1023/A:1006081903354Suche in Google Scholar

Sokolenko, A., Pojidaeva, E., Zinchenko, V., Panichkin, V., Glaser, V.M., Herrmann, R.G., and Shestakov, S.V. (2002). The gene complement for proteolysis in the cyanobacterium Synechocystis sp. PCC 6803 and Arabidopsis thaliana chloroplasts. Curr. Genet.41, 291–310.Suche in Google Scholar

Stahl, A., Pavlov, P., and Glaser, E. (2000). Rapid degradation of the presequence of the F1β subunit of the ATP synthase inside mitochondria. Biochem. J.369, 703–707.10.1042/bj3490703Suche in Google Scholar

Stahl, A., Moberg, P., Ytterberg, J., Panfilov, O., Brockenhuus Von Lowenhielm, H., Nilsson, F., and Glaser, E. (2002). Isolation and identification of a novel mitochondrial metalloprotease (PreP) that degrades targeting presequences in plants. J. Biol. Chem.277, 41931–41939.10.1074/jbc.M205500200Suche in Google Scholar

Stahl, A., Nilsson, S., Lundberg, P., Bhushan, S., Biverstahl, H., Moberg, P., Morisset, M., Vener, A., Maler, L., Langel, U., and Glaser, E. (2005). Two novel targeting peptide degrading proteases, PrePs, in mitochondria and chloroplasts, so similar and still different. J. Mol. Biol.349, 847–860.10.1016/j.jmb.2005.04.023Suche in Google Scholar

Vajdos, F.F., Ultsch, M., Schaffer, M.L., Deshayes, K.D., Liu, J., Skelton, N.J., and de Vos, A.M. (2001). Crystal structure of human insulin-like growth factor-1: detergent binding inhibits binding protein interactions. Biochemistry40, 11022–11029.10.1021/bi0109111Suche in Google Scholar

Van der Bliek, A.M. and Koehler, C.M. (2003). A mitochondrial rhomboid protease. Dev. Cell4, 769–770.10.1016/S1534-5807(03)00167-9Suche in Google Scholar

Wieprecht, T., Apostolov, O., Beyermann, M., and Seelig, J. (2000). Interaction of a mitochondrial presequence with lipid membranes: role of helix formation for membrane binding and perturbation. Biochemistry19, 15297–15305.10.1021/bi001774vSuche in Google Scholar PubMed

Zhang, X.P. and Glaser, E. (2002). Interaction of plant mitochondrial and chloroplast signal peptides with the Hsp70 molecular chaperone. Trends Plant Sci.7, 14–21.10.1016/S1360-1385(01)02180-XSuche in Google Scholar

Published Online: 2006-11-02
Published in Print: 2006-10-01

©2006 by Walter de Gruyter Berlin New York

Artikel in diesem Heft

  1. Highlight: Redox signaling – mechanisms and biological impact
  2. Paper of the Year 2005: Award to Vanessa Ferreira Merino
  3. Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism
  4. Hypoxia and lipid signaling
  5. Glutathione peroxidases and redox-regulated transcription factors
  6. Redox regulation of the hypoxia-inducible factor
  7. The l-arginine nitric oxide pathway: avenue for a multiple-level approach to assess vascular function
  8. Protein oxidation and proteolysis
  9. Mitochondrial signaling, TOR, and life span
  10. Pathogenetic interplay between osmotic and oxidative stress: the hepatic encephalopathy paradigm
  11. Regulation of redox-sensitive exofacial protein thiols in CHO cells
  12. N-Ethylmaleimide-sensitive factor: a redox sensor in exocytosis
  13. Aspects of the biological redox chemistry of cysteine: from simple redox responses to sophisticated signalling pathways
  14. Singlet oxygen inactivates protein tyrosine phosphatase-1B by oxidation of the active site cysteine
  15. Regulatory effects of the mitochondrial energetic status on mitochondrial p66Shc
  16. Air pollution-associated fly ash particles induce fibrotic mechanisms in primary fibroblasts
  17. Incinerator fly ash provokes alteration of redox equilibrium and liberation of arachidonic acid in vitro
  18. Unique neuronal functions of cathepsin L and cathepsin B in secretory vesicles: biosynthesis of peptides in neurotransmission and neurodegenerative disease
  19. Two novel mitochondrial and chloroplastic targeting-peptide-degrading peptidasomes in A. thaliana, AtPreP1 and AtPreP2
  20. Switch from actin α1 to α2 expression and upregulation of biomarkers for pressure overload and cardiac hypertrophy in taurine-deficient mouse heart
  21. Human RBM28 protein is a specific nucleolar component of the spliceosomal snRNPs
  22. The β12-β13 loop is a key regulatory element for the activity and properties of the catalytic domain of protein phosphatase 1 and 2B
  23. DNA-binding properties of the recombinant high-mobility-group-like AT-hook-containing region from human BRG1 protein
  24. Papaya glutamine cyclotransferase shows a singular five-fold β-propeller architecture that suggests a novel reaction mechanism
  25. First identification of a phosphorylcholine-substituted protein from Caenorhabditis elegans: isolation and characterization of the aspartyl protease ASP-6
  26. The human cathelicidin peptide LL-37 and truncated variants induce segregation of lipids and proteins in the plasma membrane of Candida albicans
  27. Specificity of human cathepsin S determined by processing of peptide substrates and MHC class II-associated invariant chain
  28. Mast cell-dependent activation of pro matrix metalloprotease 2: a role for serglycin proteoglycan-dependent mast cell proteases
Heruntergeladen am 2.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/BC.2006.180/html
Button zum nach oben scrollen