Home Hypoxia and lipid signaling
Article
Licensed
Unlicensed Requires Authentication

Hypoxia and lipid signaling

  • Andrea Huwiler and Josef Pfeilschifter
Published/Copyright: November 2, 2006

Abstract

Sufficient oxygen supply is crucial for the development and physiology of mammalian cells and tissues. When simple diffusion of oxygen becomes inadequate to provide the necessary flow of substrate, evolution has provided cells with tools to detect and respond to hypoxia by upregulating the expression of specific genes, which allows an adaptation to hypoxia-induced stress conditions. The modulation of cell signaling by hypoxia is an emerging area of research that provides insight into the orchestration of cell adaptation to a changing environment. Cell signaling and adaptation processes are often accompanied by rapid and/or chronic remodeling of membrane lipids by activated lipases. This review highlights the bi-directional relation between hypoxia and lipid signaling mechanisms.

:

Corresponding author

References

Ahmad, M., Long, J.S., Pyne, N.J., and Pyne, S. (2006). The effect of hypoxia on lipid phosphate receptor and sphingosine kinase expression and mitogen-activated protein kinase signaling in human pulmonary smooth muscle cells. Prostaglandins Other Lipid Mediat.79, 278–286.10.1016/j.prostaglandins.2006.03.001Search in Google Scholar

Albina, J.E., Mastrofrancesco, B., Vessella, J.A., Louis, C.A., Henry, W.L. Jr., and Reichner, J.S. (2001). HIF-1 expression in healing wounds: HIF-1α induction in primary inflammatory cells by TNF-α. Am. J. Physiol. Cell. Physiol.281, C1971–C1877.10.1152/ajpcell.2001.281.6.C1971Search in Google Scholar

Aragones, J., Jones, D.R., Martin, S., San Juan, M.A., Alfranca, A., Vidal, F., Vara, A., Merida, I., and Landazuri, M.O. (2001). Evidence for the involvement of diacylglycerol kinase in the activation of hypoxia-inducible transcription factor 1 by low oxygen tension. J. Biol. Chem.276, 10548–10555.10.1074/jbc.M006180200Search in Google Scholar

Arai, K., Ikegaya, Y., Nakatani, Y., Kudo, I., Nishiyama, N., and Matsuki, N. (2001). Phospholipase A2 mediates ischemic injury in the hippocampus: a regional difference of neuronal vulnerability. Eur. J. Neurosci.13, 2319–2323.10.1046/j.0953-816x.2001.01623.xSearch in Google Scholar

Archer, S.L., Wu, X.C., Thebaud, B., Nsair, A., Bonnet, S., Tyrrell, B., McMurtry, M.S., Hashimoto, K., Harry, G., and Michelakis, E.D. (2004). Preferential expression and function of voltage-gated, O2-sensitive K+ channels in resistance pulmonary arteries explains regional heterogeneity in hypoxic pulmonary vasoconstriction: ionic diversity in smooth muscle cells. Circ. Res.95, 308–318.10.1161/01.RES.0000137173.42723.fbSearch in Google Scholar

Aschrafi, A., Shabahang, S., Pfeilschifter, J., and Huwiler, A. (2003). Regulatory functions of protein kinase C isoenzymes in the kidney. Curr. Top. Biochem. Res.5, 27–41.Search in Google Scholar

Balsinde, J., Winstead, M.V., and Dennis, E.A. (2002). Phospholipase A2 regulation of arachidonic acid mobilization. FEBS Lett.531, 2–6.10.1016/S0014-5793(02)03413-0Search in Google Scholar

Basnakian, A.G., Ueda, N., Hong, X., Galitovsky, V.E., Yin, X., and Shah, S.V. (2005). Ceramide synthase is essential for endonuclease-mediated death of renal tubular epithelial cells induced by hypoxia-reoxygenation. Am. J. Physiol. Renal Physiol.288, F308–F314.10.1152/ajprenal.00204.2004Search in Google Scholar PubMed

Bazan, N.G. and Lukiw, W.J. (2002). Cyclooxygenase-2 and presenilin-1 gene expression induced by interleukin-1β and amyloid β 42 peptide is potentiated by hypoxia in primary human neural cells. J. Biol. Chem.277, 30359–30367.10.1074/jbc.M203201200Search in Google Scholar PubMed

Berridge, M.J. (1984). Inositol trisphosphate and diacylglycerol as second messengers. Biochem. J.220, 345–360.10.1042/bj2200345Search in Google Scholar PubMed PubMed Central

Bielawska, A.E., Shapiro, J.P., Jiang, L., Melkonyan, H.S., Piot, C., Wolfe, C.L., Tomei, L.D., Hannun, Y.A., and Umansky, S.R. (1997). Ceramide is involved in triggering of cardiomyocyte apoptosis induced by ischemia and reperfusion. Am. J. Pathol.151, 1257–1263.Search in Google Scholar

Bonazzi, A., Mastyugin, V., Mieyal, P.A., Dunn, M.W., and Laniado-Schwartzman, M. (2000). Regulation of cyclooxygenase-2 by hypoxia and peroxisome proliferators in the corneal epithelium. J. Biol. Chem.275, 2837–2844.10.1074/jbc.275.4.2837Search in Google Scholar PubMed

Bright, R. and Mochly-Rosen, D. (2005). The role of protein kinase C in cerebral ischemic and reperfusion injury. Stroke 36, 2781–2790.10.1161/01.STR.0000189996.71237.f7Search in Google Scholar

Busse, R., Förstermann, U., Matsuda, H., and Pohl, U. (1984). The role of prostaglandins in the endothelium-mediated vasodilatory response to hypoxia. Pflüger's Arch.401, 77–83.10.1007/BF00581536Search in Google Scholar

Callapina, M., Zhou, J., Schnitzer, S., Metzen, E., Lohr, C., Deitmer, J.W., and Brüne, B. (2005). Nitric oxide reverses desferrioxamine- and hypoxia-evoked HIF-1α accumulation – implications for prolyl hydroxylase activity and iron. Exp. Cell Res.306, 274–284.10.1016/j.yexcr.2005.02.018Search in Google Scholar

Chae, S.S., Paik, J.H., Allende, M.L., Proia, R.L., and Hla, T. (2004). Regulation of limb development by the sphingosine 1-phosphate receptor S1P1/EDG-1 occurs via the hypoxia/VEGF axis. Dev. Biol.268, 441–447.10.1016/j.ydbio.2004.01.001Search in Google Scholar

Chida, M. and Voelkel, N.F. (1996). Effects of acute and chronic hypoxia on rat lung cyclooxygenase. Am. J. Physiol.270, L872–L878.10.1152/ajplung.1996.270.5.L872Search in Google Scholar

Cordis, G.A., Yoshida, T., and Das, D.K. (1998). HPTLC analysis of sphingomylein, ceramide and sphingosine in ischemic/reperfused rat heart. J. Pharm. Biomed. Anal.16, 1189–1193.10.1016/S0731-7085(97)00260-4Search in Google Scholar

Cramer, T., Yamanishi, Y., Clausen, B.E., Foster, I., Pawlinski, R., Mackman, N., Haase, V.H., Jaenisch, R., Corr, M., Nizet, V., et al. (2003). HIF-1α is essential for myeloid cell-mediated inflammation. Cell112, 645–657.10.1016/S0092-8674(03)00154-5Search in Google Scholar

Dames, S.A., Martinez-Yamout, M., De Guzman, R.N., Dyson, H.J., and Wright, P.E. (2002). Structural basis for HIF-1α/CBP recognition in the cellular hypoxic response. Proc. Natl. Acad. Sci. USA99, 5271–5276.10.1073/pnas.082121399Search in Google Scholar

Demasi, M., Cleland, L.G., Cook-Johnson, R.J., Caughey, G.E., and James, M.J. (2003). Effects of hypoxia on monocyte inflammatory mediator production: Dissociation between changes in cyclooxygenase-2 expression and eicosanoid synthesis. J. Biol. Chem.278, 38607–38616.10.1074/jbc.M305944200Search in Google Scholar

Elvert, G., Lanz, S., Kappel, A., and Flamme, I. (1999). mRNA cloning and expression studies of the quail homologue of HIF-2α. Mech. Dev.87, 193–197.10.1016/S0925-4773(99)00144-6Search in Google Scholar

El Alwani, M., Usta, J., Nemer, G., Sabban, M.E., Nasser, M., Bitar, H., Souki, R., Dbaibo, G.S., and Bitar, F.F. (2005). Regulation of the sphingolipid signaling pathways in the growing and hypoxic rat heart. Prostaglandins Other Lipid Mediat.78, 249–263.10.1016/j.prostaglandins.2005.09.002Search in Google Scholar PubMed

Epstein, A.C., Gleadle, J.M., McNeill, L.A., Hewitson, K.S., O'Rourke, J., Mole, D.R., Mukherji, M., Metzen, E., Wilson, M.I., Dhanda, A., et al. (2001). C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell107, 43–54.Search in Google Scholar

Fearon, I.M., Palmer, A.C., Balmforth, A.J., Ball, S.G., Mikala, G., Schwartz, A., and Peers, C. (1997). Hypoxia inhibits the recombinant α 1C subunit of the human cardiac L-type Ca2+ channel. J. Physiol.500, 551–556.10.1113/jphysiol.1997.sp022041Search in Google Scholar PubMed PubMed Central

Franco-Obregon, A., Urena, J., and Lopez-Barneo, J. (1995). Oxygen-sensitive calcium channels in vascular smooth muscle and their possible role in hypoxic arterial relaxation. Proc. Natl. Acad. Sci. USA92, 4715–4719.10.1073/pnas.92.10.4715Search in Google Scholar PubMed PubMed Central

Freedman, S.J., Sun, Z.Y., Poy, F., Kung, A.L., Livingston, D.M., Wagner, G., and Eck, M.J. (2002). Structural basis for recruitment of CBP/p300 by hypoxia-inducible factor-1α. Proc. Natl. Acad. Sci. USA99, 5367–5372.10.1073/pnas.082117899Search in Google Scholar PubMed PubMed Central

Goldberg, M., Zhang, H.L., and Steinberg, S.F. (1997). Hypoxia alters the subcellular distribution of protein kinase C isoforms in neonatal rat ventricular myocytes. J. Clin. Invest.99, 55–61.10.1172/JCI119133Search in Google Scholar PubMed PubMed Central

Görlach, A., Diebold, I., Schini-Kerth, V.B., Berchner-Pfannschmidt, U., Roth, U., Brandes, R.P., Kietzmann, T., and Busse, R. (2001). Thrombin activates the hypoxia-inducible factor-1 signaling pathway in vascular smooth muscle cells: role of the p22(phox)-containing NADPH oxidase. Circ. Res.89, 47–54.10.1161/hh1301.092678Search in Google Scholar PubMed

Haase, V.H. (2006). Hypoxia-inducible factors in the kidney. Am. J. Physiol. Renal Physiol.291, F271–F281.10.1152/ajprenal.00071.2006Search in Google Scholar PubMed PubMed Central

Hara, S., Kudo, I., Chang, H.W., Matsuda, K., Miyamoto, T., and Inoue, K. (1989). Purification and characterization of extracellular phospholipase A2 from human synovial fluid in rheumatoid arthritis. J. Biochem.105, 395–399.10.1093/oxfordjournals.jbchem.a122675Search in Google Scholar PubMed

Hara, S., Hamada, J., Kobayashi, C., Kondo, Y., and Imura, N. (2001). Expression and characterization of hypoxia-inducible factor (HIF)-3α in human kidney: suppression of HIF-mediated gene expression by HIF-3α. Biochem. Biophys. Res. Commun.287, 808–813.10.1006/bbrc.2001.5659Search in Google Scholar PubMed

Hellwig-Burgel, T., Rutkowski, K., Metzen, E., Fandrey, J., and Jelkmann, W. (1999). Interleukin-1β and tumor necrosis factor-α stimulate DNA binding of hypoxia-inducible factor-1. Blood94, 1561–1567.10.1182/blood.V94.5.1561Search in Google Scholar

Hernandez, O.M., Discher, D.J., Bishopric, N.H., and Webster, W.A. (2000). Rapid activation of neutral sphingomyelinase by hypoxia-reoxygenation of cardiac myocytes. Circ. Res.86, 198–204.10.1161/01.RES.86.2.198Search in Google Scholar

Hool, L.C. (2005). Acute hypoxia differentially regulates K+ channels. Implications with respect to cardiac arrhythmia. Eur. Biophys. J.34, 369–376.Search in Google Scholar

Huang, S.P., Wu, M.S., Shun, C.T., Wang, H.P., Hsieh, C.Y., Kuo, M.L., and Lin, J.T. (2005). Cyclooxygenase-2 increases hypoxia-inducible factor-1 and vascular endothelial growth factor to promote angiogenesis in gastric carcinoma. J. Biomed. Sci.12, 229–241.10.1007/s11373-004-8177-5Search in Google Scholar

Huwiler, A. and Pfeilschifter, J. (1993). A role for protein kinase C-α in zymosan-stimulated eicosanoid synthesis in mouse peritoneal macrophages. Eur. J. Biochem.217, 69–75.10.1111/j.1432-1033.1993.tb18219.xSearch in Google Scholar

Huwiler, A., Fabbro, D., and Pfeilschifter, J. (1991). Possible regulatory functions of protein kinase C-α and -ɛ isoenzymes in rat renal mesangial cells. Stimulation of prostaglandin synthesis and feedback inhibition of angiotensin II-stimulated phosphoinositide hydrolysis. Biochem. J.279, 441–445.Search in Google Scholar

Huwiler, A., Kolter, T., Pfeilschifter, J., and Sandhoff, K. (2000). Physiology and pathophysiology of sphingolipid metabolism and signaling. Biochim. Biophys. Acta1485, 63–99.10.1016/S1388-1981(00)00042-1Search in Google Scholar

Iyer, N.V., Kotch, L.E., Agani, F., Leung, S.W., Laughner, E., Wenger, R.H., Gassmann, M., Gearhart, J.D., Lawler, A.M., Yu, A.Y., and Semenza, G.L. (1998). Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev.12, 149–162.10.1101/gad.12.2.149Search in Google Scholar

Jelkmann, W., Kurtz, A., Förstermann, U., Pfeilschifter, J., and Bauer, C. (1985). Hypoxia enhances prostaglandin synthesis in renal mesangial cell cultures. Prostaglandins30, 109–118.10.1016/S0090-6980(85)80014-9Search in Google Scholar

Jones, M.K., Szabo, I.L., Kawanaka, H., Husain, S.S., and Tarnawski, A.S. (2002). von Hippel Lindau tumor suppressor and HIF-1α: new targets of NSAIDs inhibition of hypoxia-induced angiogenesis. FASEB J.16, 264–266.10.1096/fj.01-0589fjeSearch in Google Scholar PubMed

Kurtz, A., Jelkmann, W., Pfeilschifter, J., and Bauer, C. (1985). Role of prostaglandins in hypoxia-stimulated erythropoietin production. Am. J. Physiol.249, C3–C8.10.1152/ajpcell.1985.249.1.C3Search in Google Scholar PubMed

Liu, X.H., Kirschenbaum, A., Lu, M., Yao, S., Dosoretz, A., Holland, J.F., and Levine, A.C. (2002). Prostaglandin E2 induces hypoxia-inducible factor-1α stabilization and nuclear localization in a human prostate cancer cell line. J. Biol. Chem.277, 50081–50006.10.1074/jbc.M201095200Search in Google Scholar PubMed

Lopez-Barneo, J., Lopez-Lopez, J.R., Urena, J., and Gonzales, C. (1988). Chemotransduction in the carotid body: K+ current modulated by PO2 in type I chemoreceptor cells. Science 241, 580–582.10.1126/science.2456613Search in Google Scholar PubMed

Lopez-Barneo, J., Pardal, R., Montoro, R.J., Smani, T., Garcia-Hirschfeld, J., and Urena, J. (1999). K+ and Ca2+ channel activity and cytosolic [Ca2+] in oxygen-sensing tissues. Respir. Physiol.115, 215–227.10.1016/S0034-5687(99)00016-XSearch in Google Scholar

Mahon, P.C., Hirota, K., and Semenza, G.L. (2001). FIH-1: a novel protein that interacts with HIF-1α and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev.15, 2675–2686.10.1101/gad.924501Search in Google Scholar

Maxwell, P.H., Wiesener, M.S., Chang, G.W., Clifford, S.C., Vaux, E.C., Cockman, M.E., Wykoff, C.C., Pugh, C.W., Maher, E.R., and Ratcliffe, P.J. (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature399, 271–275.10.1038/20459Search in Google Scholar

Maynard, M.A., Qi, H., Chung, J., Lee, E.H., Kondo, Y., Hara, S., Conaway, R.C., Conaway, J.W., and Ohh, M. (2003). Multiple splice variants of the human HIF-3α locus are targets of the von Hippel-Lindau E3 ubiquitin ligase complex. J. Biol. Chem.278, 11032–11040.10.1074/jbc.M208681200Search in Google Scholar

Melillo, G., Taylor, L.S., Brooks, A., Cox, G.W., and Varesio, L. (1996). Regulation of inducible nitric oxide synthase expression in IFN-γ-treated murine macrophages cultured under hypoxic conditions. J. Immunol.157, 2638–2644.10.4049/jimmunol.157.6.2638Search in Google Scholar

Mellor, H. and Parker, P.J. (1998). The extended protein kinase C superfamily. Biochem. J.332, 281–292.10.1042/bj3320281Search in Google Scholar

Metzen, E., Zhou, J., Jelkmann, W., Fandrey, J., and Brüne, B. (2003). Nitric oxide impairs normoxic degradation of HIF-1α by inhibition of prolyl hydroxylases. Mol. Biol. Cell14, 3470–3481.10.1091/mbc.e02-12-0791Search in Google Scholar

Michelakis, E.D., Rebeyka, I., Wu, X., Nsair, A., Thebaud, B., Hashimoto, K., Dyck, J.R., Haromy, A., Harry, G., Barr, A., and Archer, S.L. (2002). O2 sensing in the human ductus arteriosus: regulation of voltage-gated K+ channels in smooth muscle cells by a mitochondrial redox sensor. Circ. Res.91, 478–486.10.1161/01.RES.0000035057.63303.D1Search in Google Scholar

Michiels, C., Renard, P., Bouaziz, N., Heck, N., Eliaers, F., Ninane, N., Quarck, R., Holvoet, P., and Raes, M. (2002). Identification of the phospholipase A2 isoforms that contribute to arachidonic acid release in hypoxic endothelial cells: limits of phospholipase A2 inhibitors. Biochem. Pharmacol.63, 321–332.10.1016/S0006-2952(01)00832-2Search in Google Scholar

Nevalainen, T.J., Haapamaki, M.M., and Gronroos, J.M. (2000). Roles of secretory phospholipases A2 in inflammatory diseases and trauma. Biochim. Biophys. Acta1488, 83–90.10.1016/S1388-1981(00)00112-8Search in Google Scholar

Nishizuka, Y. (1995). Protein kinase C and lipid signaling for sustained cellular responses. FASEB J.9, 484–496.10.1096/fasebj.9.7.7737456Search in Google Scholar

Palayoor, S.T., Tofilon, P.J., and Coleman, C.N. (2003). Ibuprofen-mediated reduction of hypoxia-inducible factors HIF-1α and HIF-2α in prostate cancer cells. Clin. Cancer Res.9, 3150–3157.Search in Google Scholar

Peet, D. and Linke, S. (2006). Regulation of HIF: asparaginyl hydroxylation. Novartis Found. Symp.272, 37–49.10.1002/9780470035009.ch5Search in Google Scholar

Petroni, A., Papini, N., Blasevich, M., Rise, P., and Galli, C. (2002). Arachidonate release and c-fos expression in various models of hypoxia and hypoxia-hypoglycemia in retinoic acid differentiated neuroblastoma cells. Neurochem. Int.40, 255–260.10.1016/S0197-0186(01)00066-3Search in Google Scholar

Petry, C., Huwiler, A., Eberhardt, W., Kaszkin, M., and Pfeilschifter, J. (2005). Hypoxia increases group IIA phospholipase A2 expression under inflammatory conditions in rat renal mesangial cells. J. Am. Soc. Nephrol.16, 2897–2905.10.1681/ASN.2004121051Search in Google Scholar PubMed

Pfeilschifter, J., Eberhardt, W., and Beck, K.F. (2001). Regulation of gene expression by nitric oxide. Pflüger's Arch.442, 479–486.10.1007/s004240100586Search in Google Scholar PubMed

Pugh, C.W. and Ratcliffe, P.J. (2003). Regulation of angiogenesis by hypoxia: role of the HIF system. Nat. Med.9, 677–684.10.1038/nm0603-677Search in Google Scholar PubMed

Rupprecht, G., Scholz, K., Beck, K.F., Geiger, H., Pfeilschifter, J., and Kaszkin, M. (1999). Cross-talk between group IIA-phospholipase A2 and inducible NO-synthase in rat renal mesangial cells. Br. J. Pharmacol.127, 51–56.10.1038/sj.bjp.0702500Search in Google Scholar PubMed PubMed Central

Sanchez-Lopez, E., Lopez, A.F., Esteban, V., Yague, S., Egido, J., Ruiz-Ortega, M., and Alvarez-Arroyo, M.V. (2005). Angiotensin II regulates vascular endothelial growth factor via hypoxia-inducible factor-1α induction and redox mechanisms in the kidney. Antioxid. Redox Signal.7, 1275–1284.10.1089/ars.2005.7.1275Search in Google Scholar PubMed

Schmedtje, J.F. Jr., Ji, Y.S., Liu, W.L., DuBois, R.N., and Runge, M.S. (1997). Hypoxia induces cyclooxygenase-2 via the NF-κB p65 transcription factor in human vascular endothelial cells. J. Biol. Chem.272, 601–608.10.1074/jbc.272.1.601Search in Google Scholar PubMed

Scholz-Pedretti, K., Gans, A., Beck, K.F., Pfeilschifter, J., and Kaszkin, M. (2002). Potentiation of TNF-α-stimulated group IIA phospholipase A2 expression by peroxisome proliferator-activated receptor α activators in rat mesangial cells. J. Am. Soc. Nephrol.13, 611–620.10.1681/ASN.V133611Search in Google Scholar PubMed

Semenza, G.L. (1999). Regulation of mammalian O2 homeostasis by hypoxia-inducible factor. Annu. Rev. Cell Dev. Biol.15, 551–578.10.1146/annurev.cellbio.15.1.551Search in Google Scholar PubMed

Semenza, G.L. (2006). HIF-1 and human disease: one highly involved factor. Genes Dev.14, 1983–1991.Search in Google Scholar

Serhan, C.N., Haeggstrom, J.Z., and Leslie, C.C. (1996). Lipid mediator networks in cell signaling: update and impact of cytokines. FASEB J.10, 1147–1158.10.1096/fasebj.10.10.8751717Search in Google Scholar

Shatrov, V.A., Sumbayev, V.V., Zhou, J., and Brüne, B. (2003). Oxidized low-density lipoprotein (oxLDL) triggers hypoxia-inducible factor-1α (HIF-1α). accumulation via redox-dependent mechanisms. Blood101, 4847–4849.Search in Google Scholar

Six, D.A. and Dennis, E.A. (1998). The expanding superfamily of phospholipase A2 enzymes: classification and characterization. Biochim. Biophys. Acta1488, 1–19.Search in Google Scholar

Spiegel, S. and Milstien, S. (2003). Sphingosine-1-phosphate: an enigmatic signaling lipid. Nat. Rev. Mol. Cell Biol.4, 397–407.10.1038/nrm1103Search in Google Scholar

Stiehl, D.P., Jelkmann, W., Wenger, R.H., and Hellwig-Burgel, T. (2002). Normoxic induction of the hypoxia-inducible factor 1α by insulin and interleukin-1β involves the phosphatidylinositol 3-kinase pathway. FEBS Lett.512, 157–162.10.1016/S0014-5793(02)02247-0Search in Google Scholar

Sogawa, K., Numayama-Tsuruta, K., Ema, M., Abe, M., Abe, H., and Fujii-Kuriyama, Y. (1998). Inhibition of hypoxia-inducible factor 1 activity by nitric oxide donors in hypoxia. Proc. Natl. Acad. Sci. USA95, 7368–7373.10.1073/pnas.95.13.7368Search in Google Scholar

Takagi, S., Toio, H., Tomita, S., Sano, S., Itami, S., Hara, M., Inoue, S., Horie, K., Kondoh, G., Hosokawa, K., et al. (2003). Alteration of the 4-sphingenine scaffolds of ceramides in keratinocyte-specific Arnt-deficient mice affects skin barrier function. J. Clin. Invest.112, 1372–1382.10.1172/JCI200318513Search in Google Scholar

Temes, E., Martin-Puig, S., Aragones, J., Jones, D.R., Olmos, G., merida, I., and Landazuri, M.O. (2004). Role of diacylglycerol induced by hypoxia in the regulation of HIF-1α activity. Biochem. Biophys. Res. Commun.315, 44–50.10.1016/j.bbrc.2004.01.015Search in Google Scholar

Thornton, R.D., Lane, P., Borghaei, R.C., Pease, E.A., Caro, J., and Mochan, E. (2000). Interleukin 1 induces hypoxia-inducible factor 1 in human gingival and synovial fibroblasts. Biochem. J.350, 307–312.10.1042/bj3500307Search in Google Scholar

Yun, J.K. and Kester, M. (2002). Regulatory role of sphingomyelin metabolites in hypoxia-induced vascular smooth muscle cell proliferation. Arch. Biochem. Biophys.408, 78–86.10.1016/S0003-9861(02)00526-XSearch in Google Scholar

Zager, R.A., Iwata, M., Conrad, D.S., Burkhart, K.M., and Igarashi, Y. (1997). Altered ceramide and sphingosine expression during the induction phase of ischemic acute renal failure. Kidney Int.52, 60–70.10.1038/ki.1997.304Search in Google Scholar PubMed

Zelzer, E., Levy, Y., Kahana, C., Shilo, B.Z., Rubinstein, M., and Cohen, B. (1998). Insulin induces transcription of target genes through the hypoxia-inducible factor HIF-1α/ARNT. EMBO J.17, 5085–5094.10.1093/emboj/17.17.5085Search in Google Scholar PubMed PubMed Central

Zhong, H., Willard, M., and Simons, J. (2004). NS398 reduces hypoxia-inducible factor (HIF)-1α and HIF-1 activity: multiple-level effects involving cyclooxygenase-2 dependent and independent mechanisms. Int. J. Cancer112, 585–595.10.1002/ijc.20438Search in Google Scholar PubMed

Published Online: 2006-11-02
Published in Print: 2006-10-01

©2006 by Walter de Gruyter Berlin New York

Articles in the same Issue

  1. Highlight: Redox signaling – mechanisms and biological impact
  2. Paper of the Year 2005: Award to Vanessa Ferreira Merino
  3. Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism
  4. Hypoxia and lipid signaling
  5. Glutathione peroxidases and redox-regulated transcription factors
  6. Redox regulation of the hypoxia-inducible factor
  7. The l-arginine nitric oxide pathway: avenue for a multiple-level approach to assess vascular function
  8. Protein oxidation and proteolysis
  9. Mitochondrial signaling, TOR, and life span
  10. Pathogenetic interplay between osmotic and oxidative stress: the hepatic encephalopathy paradigm
  11. Regulation of redox-sensitive exofacial protein thiols in CHO cells
  12. N-Ethylmaleimide-sensitive factor: a redox sensor in exocytosis
  13. Aspects of the biological redox chemistry of cysteine: from simple redox responses to sophisticated signalling pathways
  14. Singlet oxygen inactivates protein tyrosine phosphatase-1B by oxidation of the active site cysteine
  15. Regulatory effects of the mitochondrial energetic status on mitochondrial p66Shc
  16. Air pollution-associated fly ash particles induce fibrotic mechanisms in primary fibroblasts
  17. Incinerator fly ash provokes alteration of redox equilibrium and liberation of arachidonic acid in vitro
  18. Unique neuronal functions of cathepsin L and cathepsin B in secretory vesicles: biosynthesis of peptides in neurotransmission and neurodegenerative disease
  19. Two novel mitochondrial and chloroplastic targeting-peptide-degrading peptidasomes in A. thaliana, AtPreP1 and AtPreP2
  20. Switch from actin α1 to α2 expression and upregulation of biomarkers for pressure overload and cardiac hypertrophy in taurine-deficient mouse heart
  21. Human RBM28 protein is a specific nucleolar component of the spliceosomal snRNPs
  22. The β12-β13 loop is a key regulatory element for the activity and properties of the catalytic domain of protein phosphatase 1 and 2B
  23. DNA-binding properties of the recombinant high-mobility-group-like AT-hook-containing region from human BRG1 protein
  24. Papaya glutamine cyclotransferase shows a singular five-fold β-propeller architecture that suggests a novel reaction mechanism
  25. First identification of a phosphorylcholine-substituted protein from Caenorhabditis elegans: isolation and characterization of the aspartyl protease ASP-6
  26. The human cathelicidin peptide LL-37 and truncated variants induce segregation of lipids and proteins in the plasma membrane of Candida albicans
  27. Specificity of human cathepsin S determined by processing of peptide substrates and MHC class II-associated invariant chain
  28. Mast cell-dependent activation of pro matrix metalloprotease 2: a role for serglycin proteoglycan-dependent mast cell proteases
Downloaded on 19.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/BC.2006.165/html
Scroll to top button