Home The role of kallikrein-related peptidases in prostate cancer: potential involvement in an epithelial to mesenchymal transition
Article
Licensed
Unlicensed Requires Authentication

The role of kallikrein-related peptidases in prostate cancer: potential involvement in an epithelial to mesenchymal transition

  • Astrid K. Whitbread , Tara L. Veveris-Lowe , Mitchell G. Lawrence , David L. Nicol and Judith A. Clements
Published/Copyright: June 26, 2006
Biological Chemistry
From the journal Volume 387 Issue 6

Abstract

Several members of the kallikrein-related peptidase family of serine proteases have proteolytic activities that may affect cancer progression; however, the in vivo significance of these activities remains uncertain. We have demonstrated that expression of PSA or KLK4, but not KLK2, in PC-3 prostate cancer cells changed the cellular morphology from epithelial to spindle-shaped, markedly reduced E-cadherin expression, increased vimentin expression and increased cellular migration. These changes are indicative of an epithelial to mesenchymal transition (EMT), a process important in embryonic development and cancer progression. The potential novel role of kallikrein-related peptidases in this process is the focus of this brief review.

:

Corresponding author

References

AIHW (2004). Australia's Health 2004 (Canberra, Australia: Australian Institute of Health and Welfare).Search in Google Scholar

Arias, A.M. (2001). Epithelial mesenchymal interactions in cancer and development. Cell105, 425–431.10.1016/S0092-8674(01)00365-8Search in Google Scholar

Bachelder, R.E., Yoon, S.O., Franci, C., de Herreros, A.G., and Mercurio, A.M. (2005). Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: implications for the epithelial-mesenchymal transition. J. Cell Biol.168, 29–33.10.1083/jcb.200409067Search in Google Scholar

Bates, R.C., Bellovin, D.I., Brown, C., Maynard, E., Wu, B., Kawakatsu, H., Sheppard, D., Oettgen, P., and Mercurio, A.M. (2005). Transcriptional activation of integrin β6 during the epithelial-mesenchymal transition defines a novel prognostic indicator of aggressive colon carcinoma. J. Clin. Invest.115, 339–347.10.1172/JCI200523183Search in Google Scholar

Batlle, E., Sancho, E., Franci, C., Dominguez, D., Monfar, M., Baulida, J., and Garcia De Herreros, A. (2000). The transcription factor Snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat. Cell. Biol.2, 84–89.10.1038/35000034Search in Google Scholar

Bernett, M.J., Blaber, S.I., Scarisbrick, I.A., Dhanarajan, P., Thompson, S.M., and Blaber, M. (2002). Crystal structure and biochemical characterization of human kallikrein 6 reveals that a trypsin-like kallikrein is expressed in the central nervous system. J. Biol. Chem.277, 24562–24570.10.1074/jbc.M202392200Search in Google Scholar

Birchmeier, W. and Behrens, J. (1994). Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim. Biophys. Acta1198, 11–26.10.1016/0304-419X(94)90003-5Search in Google Scholar

Bolos, V., Peinado, H., Perez-Moreno, M.A., Fraga, M.F., Esteller, M., and Cano, A. (2003). The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J. Cell. Sci.116, 499–511.10.1242/jcs.00224Search in Google Scholar PubMed

Borgono, C.A. and Diamandis, E.P. (2004). The emerging roles of human tissue kallikreins in cancer. Nat. Rev. Cancer4, 876–890.10.1038/nrc1474Search in Google Scholar PubMed

Borgono, C.A., Grass, L., Soosaipillai, A., Yousef, G.M., Petraki, C.D., Howarth, D.H., Fracchioli, S., Katsaros, D., and Diamandis, E.P. (2003). Human kallikrein 14: a new potential biomarker for ovarian and breast cancer. Cancer Res.63, 9032–9041.Search in Google Scholar

Boyer, A.S. and Runyan, R.B. (2001). TGFβ type III and TGFβ type II receptors have distinct activities during epithelial-mesenchymal cell transformation in the embryonic heart. Dev. Dyn.221, 454–459.10.1002/dvdy.1154Search in Google Scholar PubMed

Boyer, B., Roche, S., Denoyelle, M., and Thiery, J.P. (1997). Src and Ras are involved in separate pathways in epithelial cell scattering. EMBO J.16, 5904–5913.10.1093/emboj/16.19.5904Search in Google Scholar PubMed PubMed Central

Brabletz, T., Hlubek, F., Spaderna, S., Schmalhofer, O., Hiendlmeyer, E., Jung, A., and Kirchner, T. (2005). Invasion and metastasis in colorectal cancer: epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and β-catenin. Cells Tissues Organs179, 56–65.10.1159/000084509Search in Google Scholar

Brillard-Bourdet, M., Rehault, S., Juliano, L., Ferrer, M., Moreau, T., and Gauthier, F. (2002). Amidolytic activity of prostatic acid phosphatase on human semenogelins and semenogelin-derived synthetic substrates. Eur. J. Biochem.269, 390–395.10.1046/j.0014-2956.2001.02667.xSearch in Google Scholar

Cano, A., Perez-Moreno, M.A., Rodrigo, I., Locascio, A., Blanco, M.J., del Barrio, M.G., Portillo, F., and Nieto, M.A. (2000). The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol.2, 76–83.10.1038/35000025Search in Google Scholar

Cheville, J.C., Tindall, D., Boelter, C., Jenkins, R., Lohse, C.M., Pankratz, V.S., Sebo, T.J., Davis, B., and Blute, M.L. (2002). Metastatic prostate carcinoma to bone: clinical and pathologic features associated with cancer-specific survival. Cancer95, 1028–1036.10.1002/cncr.10788Search in Google Scholar

Chunthapong, J., Seftor, E.A., Khalkhali-Ellis, Z., Seftor, R.E., Amir, S., Lubaroff, D.M., Heidger, P.M. Jr., and Hendrix, M.J. (2004). Dual roles of E-cadherin in prostate cancer invasion. J. Cell Biochem.91, 649–661.10.1002/jcb.20032Search in Google Scholar

Clements, J. and Mukhtar, A. (1997). Tissue kallikrein and the bradykinin B2 receptor are expressed in endometrial and prostate cancers. Immunopharmacology36, 217–220.10.1016/S0162-3109(97)00024-6Search in Google Scholar

Clements, J.A., Willemsen, N.M., Myers, S.A., and Dong, Y. (2004). The tissue kallikrein family of serine proteases: functional roles in human disease and potential as clinical biomarkers. Crit. Rev. Clin. Lab. Sci.41, 265–312.10.1080/10408360490471931Search in Google Scholar

Cohen, P., Graves, H.C., Peehl, D.M., Kamarei, M., Giudice, L.C., and Rosenfeld, R.G. (1992). Prostate-specific antigen (PSA) is an insulin-like growth factor binding protein-3 protease found in seminal plasma. J. Clin. Endocrinol. Metab.75, 1046–1053.Search in Google Scholar

Comijn, J., Berx, G., Vermassen, P., Verschueren, K., van Grunsven, L., Bruyneel, E., Mareel, M., Huylebroeck, D., and van Roy, F. (2001). The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol. Cell7, 1267–1278.10.1016/S1097-2765(01)00260-XSearch in Google Scholar

Conacci-Sorrell, M., Zhurinsky, J., and Ben-Ze'ev, A. (2002). The cadherin-catenin adhesion system in signaling and cancer. J. Clin. Invest.109, 987–991.10.1172/JCI0215429Search in Google Scholar

Condeelis, J. and Segall, J.E. (2003). Intravital imaging of cell movement in tumours. Nat. Rev. Cancer3, 921–930.10.1038/nrc1231Search in Google Scholar PubMed

Cramer, S.D., Chen, Z., and Peehl, D.M. (1996). Prostate specific antigen cleaves parathyroid hormone-related protein in the PTH-like domain: inactivation of PTHrP-stimulated cAMP accumulation in mouse osteoblasts. J. Urol.156, 526–531.10.1097/00005392-199608000-00076Search in Google Scholar

Dallas, S.L., Zhao, S., Cramer, S.D., Chen, Z., Peehl, D.M., and Bonewald, L.F. (2005). Preferential production of latent transforming growth factor β2 by primary prostatic epithelial cells and its activation by prostate-specific antigen. J. Cell. Physiol.202, 361–370.10.1002/jcp.20147Search in Google Scholar

Deperthes, D., Frenette, G., Brillard-Bourdet, M., Bourgeois, L., Gauthier, F., Tremblay, R.R., and Dube, J.Y. (1996). Potential involvement of kallikrein hK2 in the hydrolysis of the human seminal vesicle proteins after ejaculation. J. Androl.17, 659–665.Search in Google Scholar

Desrivieres, S., Lu, H., Peyri, N., Soria, C., Legrand, Y., and Menashi, S. (1993). Activation of the 92 kDa type IV collagenase by tissue kallikrein. J. Cell. Physiol.157, 587–593.10.1002/jcp.1041570319Search in Google Scholar

Diamandis, E.P., Yousef, G.M., Soosaipillai, A.R., Grass, L., Porter, A., Little, S., and Sotiropoulou, G. (2000). Immunofluorometric assay of human kallikrein 6 (zyme/protease M/neurosin) and preliminary clinical applications. Clin. Biochem.33, 369–375.10.1016/S0009-9120(00)00145-4Search in Google Scholar

Diamandis, E.P., Okui, A., Mitsui, S., Luo, L.Y., Soosaipillai, A., Grass, L., Nakamura, T., Howarth, D.J., and Yamaguchi, N. (2002). Human kallikrein 11: a new biomarker of prostate and ovarian carcinoma. Cancer Res.62, 295–300.Search in Google Scholar

Dong, Y., Bui, L.T., Odorico, D.M., Tan, O.L., Myers, S.A., Samaratunga, H., Gardiner, R.A., and Clements, J.A. (2005). Compartmentalized expression of kallikrein 4 (KLK4/hK4) isoforms in prostate cancer: nuclear, cytoplasmic and secreted forms. Endocr. Relat. Cancer12, 875–889.10.1677/erc.1.01062Search in Google Scholar

Dunsmuir, W.D., Gillett, C.E., Meyer, L.C., Young, M.P., Corbishley, C., Eeles, R.A., and Kirby, R.S. (2000). Molecular markers for predicting prostate cancer stage and survival. BJU Int.86, 869–878.10.1046/j.1464-410x.2000.00916.xSearch in Google Scholar

Felber, L.M., Borgono, C.A., Cloutier, S.M., Kundig, C., Kishi, T., Ribeiro Chagas, J., Jichlinski, P., Gygi, C.M., Leisinger, H.J., Diamandis, E.P., and Deperthes, D. (2005). Enzymatic profiling of human kallikrein 14 using phage-display substrate technology. Biol. Chem.386, 291–298.10.1515/BC.2005.035Search in Google Scholar

Fortier, A.H., Nelson, B.J., Grella, D.K., and Holaday, J.W. (1999). Antiangiogenic activity of prostate-specific antigen. J. Natl. Cancer Inst.91, 1635–1640.10.1093/jnci/91.19.1635Search in Google Scholar

Fortier, A.H., Holaday, J.W., Liang, H., Dey, C., Grella, D.K., Holland-Linn, J., Vu, H., Plum, S.M., and Nelson, B.J. (2003). Recombinant prostate specific antigen inhibits angiogenesis in vitro and in vivo. Prostate56, 212–219.10.1002/pros.10256Search in Google Scholar

Frenette, G., Tremblay, R.R., Lazure, C., and Dube, J.Y. (1997). Prostatic kallikrein hK2, but not prostate-specific antigen (hK3), activates single-chain urokinase-type plasminogen activator. Int. J. Cancer71, 897–899.10.1002/(SICI)1097-0215(19970529)71:5<897::AID-IJC31>3.0.CO;2-2Search in Google Scholar

Ghosh, M.C., Grass, L., Soosaipillai, A., Sotiropoulou, G., and Diamandis, E.P. (2004). Human kallikrein 6 degrades extracellular matrix proteins and may enhance the metastatic potential of tumour cells. Tumour Biol.25, 193–199.10.1159/000081102Search in Google Scholar

Grande, M., Franzen, A., Karlsson, J.O., Ericson, L.E., Heldin, N.E., and Nilsson, M. (2002). Transforming growth factor-beta and epidermal growth factor synergistically stimulate epithelial to mesenchymal transition (EMT) through a MEK-dependent mechanism in primary cultured pig thyrocytes. J. Cell Sci.115, 4227–4236.10.1242/jcs.00091Search in Google Scholar

Hay, E.D. (1995). An overview of epithelio-mesenchymal transformation. Acta Anat. (Basel)154, 8–20.10.1159/000147748Search in Google Scholar

Heidtmann, H.H., Nettelbeck, D.M., Mingels, A., Jager, R., Welker, H.G., and Kontermann, R.E. (1999). Generation of angiostatin-like fragments from plasminogen by prostate-specific antigen. Br. J. Cancer81, 1269–1273.10.1038/sj.bjc.6692167Search in Google Scholar

Ishii, K., Otsuka, T., Iguchi, K., Usui, S., Yamamoto, H., Sugimura, Y., Yoshikawa, K., Hayward, S.W., and Hirano, K. (2004). Evidence that the prostate-specific antigen (PSA)/Zn2+ axis may play a role in human prostate cancer cell invasion. Cancer Lett.207, 79–87.10.1016/j.canlet.2003.09.029Search in Google Scholar

Iwamura, M., Hellman, J., Cockett, A.T., Lilja, H., and Gershagen, S. (1996). Alteration of the hormonal bioactivity of parathyroid hormone-related protein (PTHrP) as a result of limited proteolysis by prostate-specific antigen. Urology48, 317–325.10.1016/S0090-4295(96)00182-3Search in Google Scholar

Jaggi, M., Nazemi, T., Abrahams, N.A., Baker, J.J., Galich, A., Smith, L.M., and Balaji, K.C. (2006). N-cadherin switching occurs in high Gleason grade prostate cancer. Prostate66, 193–199.10.1002/pros.20334Search in Google Scholar

Jemal, A., Murray, T., Ward, E., Samuels, A., Tiwari, R.C., Ghafoor, A., Feuer, E.J., and Thun, M.J. (2005). Cancer statistics, 2005. CA Cancer J. Clin.55, 10–30.10.3322/canjclin.55.1.10Search in Google Scholar

Kaighn, M.E., Narayan, K.S., Ohnuki, Y., Lechner, J.F., and Jones, L.W. (1979). Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest. Urol.17, 16–23.Search in Google Scholar

Kallakury, B.V., Sheehan, C.E., Winn-Deen, E., Oliver, J., Fisher, H.A., Kaufman, R.P. Jr., and Ross, J.S. (2001). Decreased expression of catenins (alpha and beta), p120 CTN, and E-cadherin cell adhesion proteins and E-cadherin gene promoter methylation in prostatic adenocarcinomas. Cancer92, 2786–2795.10.1002/1097-0142(20011201)92:11<2786::AID-CNCR10128>3.0.CO;2-ISearch in Google Scholar

Kapadia, C., Chang, A., Sotiropoulou, G., Yousef, G.M., Grass, L., Soosaipillai, A., Xing, X., Howarth, D.H., and Diamandis, E.P. (2003). Human kallikrein 13: production and purification of recombinant protein and monoclonal and polyclonal antibodies, and development of a sensitive and specific immunofluorometric assay. Clin. Chem.49, 77–86.10.1373/49.1.77Search in Google Scholar

Kapadia, C., Ghosh, M.C., Grass, L., and Diamandis, E.P. (2004). Human kallikrein 13 involvement in extracellular matrix degradation. Biochem. Biophys. Res. Commun.323, 1084–1090.10.1016/j.bbrc.2004.08.206Search in Google Scholar

Killian, C.S., Corral, D.A., Kawinski, E., and Constantine, R.I. (1993). Mitogenic response of osteoblast cells to prostate-specific antigen suggests an activation of latent TGF-beta and a proteolytic modulation of cell adhesion receptors. Biochem. Biophys. Res. Commun.192, 940–947.10.1006/bbrc.1993.1506Search in Google Scholar

Kishi, T., Grass, L., Soosaipillai, A., Shimizu-Okabe, C., and Diamandis, E.P. (2003). Human kallikrein 8: immunoassay development and identification in tissue extracts and biological fluids. Clin. Chem.49, 87–96.10.1373/49.1.87Search in Google Scholar

Krill, D., Thomas, A., Wu, S.P., Dhir, R., and Becich, M.J. (2001). E-cadherin expression and PSA secretion in human prostate epithelial cells. Urol. Res.29, 287–292.10.1007/s002400100188Search in Google Scholar

Kumar, A., Mikolajczyk, S.D., Goel, A.S., Millar, L.S., and Saedi, M.S. (1997). Expression of pro form of prostate-specific antigen by mammalian cells and its conversion to mature, active form by human kallikrein 2. Cancer Res.57, 3111–3114.Search in Google Scholar

Kwok, W.K., Ling, M.T., Lee, T.W., Lau, T.C., Zhou, C., Zhang, X., Chua, C.W., Chan, K. W., Chan, F.L., Glackin, C., et al. (2005). Up-regulation of TWIST in prostate cancer and its implication as a therapeutic target. Cancer Res.65, 5153–5162.10.1158/0008-5472.CAN-04-3785Search in Google Scholar

Lilja, H. (1985). A kallikrein-like serine protease in prostatic fluid cleaves the predominant seminal vesicle protein. J. Clin. Invest.76, 1899–1903.10.1172/JCI112185Search in Google Scholar

Lilja, H., Oldbring, J., Rannevik, G., and Laurell, C.B. (1987). Seminal vesicle-secreted proteins and their reactions during gelation and liquefaction of human semen. J. Clin. Invest.80, 281–285.10.1172/JCI113070Search in Google Scholar

Lilja, H., Abrahamsson, P.A., and Lundwall, A. (1989). Semenogelin, the predominant protein in human semen. Primary structure and identification of closely related proteins in the male accessory sex glands and on the spermatozoa. J. Biol. Chem.264, 1894–1900.10.1016/S0021-9258(18)94272-9Search in Google Scholar

Lovgren, J., Rajakoski, K., Karp, M., Lundwall, A., and Lilja, H. (1997). Activation of the zymogen form of prostate-specific antigen by human glandular kallikrein 2. Biochem. Biophys. Res. Commun.238, 549–555.10.1006/bbrc.1997.7333Search in Google Scholar

Lu, Z., Ghosh, S., Wang, Z., and Hunter, T. (2003). Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell4, 499–515.10.1016/S1535-6108(03)00304-0Search in Google Scholar

Luo, J., Lubaroff, D.M., and Hendrix, M.J. (1999). Suppression of prostate cancer invasive potential and matrix metalloproteinase activity by E-cadherin transfection. Cancer Res.59, 3552–3556.Search in Google Scholar

Luo, L.Y., Grass, L., Howarth, D.J., Thibault, P., Ong, H., and Diamandis, E.P. (2001). Immunofluorometric assay of human kallikrein 10 and its identification in biological fluids and tissues. Clin. Chem.47, 237–246.10.1093/clinchem/47.2.237Search in Google Scholar

Luo, L.Y., Shan, S.J., Elliott, M.B., Soosaipillai, A., and Diamandis, E.P. (2006). Purification and characterization of human kallikrein 11, a candidate prostate and ovarian cancer biomarker, from seminal plasma. Clin. Cancer Res.12, 742–750.10.1158/1078-0432.CCR-05-1696Search in Google Scholar

Magklara, A., Mellati, A.A., Wasney, G.A., Little, S.P., Sotiropoulou, G., Becker, G.W., and Diamandis, E.P. (2003). Characterization of the enzymatic activity of human kallikrein 6: Autoactivation, substrate specificity, and regulation by inhibitors. Biochem. Biophys. Res. Commun.307, 948–955.10.1016/S0006-291X(03)01271-3Search in Google Scholar

Malm, J., Hellman, J., Hogg, P., and Lilja, H. (2000). Enzymatic action of prostate-specific antigen (PSA or hK3): substrate specificity and regulation by Zn2+, a tight-binding inhibitor. Prostate45, 132–139.10.1002/1097-0045(20001001)45:2<132::AID-PROS7>3.0.CO;2-3Search in Google Scholar

Matsumura, M., Bhatt, A.S., Andress, D., Clegg, N., Takayama, T.K., Craik, C.S., and Nelson, P.S. (2005). Substrates of the prostate-specific serine protease prostase/KLK4 defined by positional-scanning peptide libraries. Prostate62, 1–13.10.1002/pros.20101Search in Google Scholar

Michael, I.P., Sotiropoulou, G., Pampalakis, G., Magklara, A., Ghosh, M., Wasney, G., and Diamandis, E.P. (2005). Biochemical and enzymatic characterization of human kallikrein 5 (hK5), a novel serine protease potentially involved in cancer progression. J. Biol. Chem.280, 14628–14635.10.1074/jbc.M408132200Search in Google Scholar

Mundy, G.R. (2002). Metastasis to bone: causes, consequences and therapeutic opportunities. Nat. Rev. Cancer2, 584–593.10.1038/nrc867Search in Google Scholar

Nakamura, T., Mitsui, S., Okui, A., Kominami, K., Nomoto, T., Ukimura, O., Kawauchi, A., Miki, T., and Yamaguchi, N. (2001). Alternative splicing isoforms of hippostasin (PRSS20/KLK11) in prostate cancer cell lines. Prostate49, 72–78.10.1002/pros.1119Search in Google Scholar

Obiezu, C.V., Shan, S.J., Soosaipillai, A., Luo, L.Y., Grass, L., Sotiropoulou, G., Petraki, C.D., Papanastasiou, P.A., Levesque, M.A., and Diamandis, E.P. (2005). Human kallikrein 4: quantitative study in tissues and evidence for its secretion into biological fluids. Clin. Chem.51, 1432–1442.10.1373/clinchem.2005.049692Search in Google Scholar

Parries, G. and Cohen, S. (1996). Proteolysis of the human epidermal growth factor precursor (proEGF) by prostate-specific antigen. In: Proceedings of a American Urological Society Meeting (Abstract).Search in Google Scholar

Peinado, H., Quintanilla, M., and Cano, A. (2003). Transforming growth factor β1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J. Biol. Chem.278, 21113–21123.10.1074/jbc.M211304200Search in Google Scholar

Perl, A.K., Wilgenbus, P., Dahl, U., Semb, H., and Christofori, G. (1998). A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature392, 190–193.10.1038/32433Search in Google Scholar PubMed

Rajapakse, S., Ogiwara, K., Takano, N., Moriyama, A., and Takahashi, T. (2005). Biochemical characterization of human kallikrein 8 and its possible involvement in the degradation of extracellular matrix proteins. FEBS Lett.579, 6879–6884.10.1016/j.febslet.2005.11.039Search in Google Scholar PubMed

Rehault, S., Monget, P., Mazerbourg, S., Tremblay, R., Gutman, N., Gauthier, F., and Moreau, T. (2001). Insulin-like growth factor binding proteins (IGFBPs) as potential physiological substrates for human kallikreins hK2 and hK3. Eur. J. Biochem.268, 2960–2968.10.1046/j.1432-1327.2001.02185.xSearch in Google Scholar PubMed

Rittenhouse, H.G., Finlay, J.A., Mikolajczyk, S.D., and Partin, A.W. (1998). Human kallikrein 2 (hK2) and prostate-specific antigen (PSA): two closely related, but distinct, kallikreins in the prostate. Crit. Rev. Clin. Lab. Sci.35, 275–368.10.1080/10408369891234219Search in Google Scholar PubMed

Romano, L.A. and Runyan, R.B. (2000). Slug is an essential target of TGFβ2 signaling in the developing chicken heart. Dev. Biol.223, 91–102.10.1006/dbio.2000.9750Search in Google Scholar PubMed

Romanov, V.I., Whyard, T., Adler, H.L., Waltzer, W.C., and Zucker, S. (2004). Prostate cancer cell adhesion to bone marrow endothelium: the role of prostate-specific antigen. Cancer Res.64, 2083–2089.10.1158/0008-5472.CAN-03-3487Search in Google Scholar PubMed

Saedi, M.S., Hill, T.M., Kuus-Reichel, K., Kumar, A., Payne, J., Mikolajczyk, S.D., Wolfert, R.L., and Rittenhouse, H.G. (1998). The precursor form of the human kallikrein 2, a kallikrein homologous to prostate-specific antigen, is present in human sera and is increased in prostate cancer and benign prostatic hyperplasia. Clin. Chem.44, 2115–2119.10.1093/clinchem/44.10.2115Search in Google Scholar

Saika, S., Miyamoto, T., Tanaka, S., Tanaka, T., Ishida, I., Ohnishi, Y., Ooshima, A., Ishiwata, T., Asano, G., Chikama, T., et al. (2003). Response of lens epithelial cells to injury: role of lumican in epithelial-mesenchymal transition. Invest. Ophthalmol. Vis. Sci.44, 2094–2102.10.1167/iovs.02-1059Search in Google Scholar PubMed

Santagata, S., Demichelis, F., Riva, A., Varambally, S., Hofer, M.D., Kutok, J.L., Kim, R., Tang, J., Montie, J.E., Chinnaiyan, A.M., et al. (2004). JAGGED1 expression is associated with prostate cancer metastasis and recurrence. Cancer Res.64, 6854–6857.10.1158/0008-5472.CAN-04-2500Search in Google Scholar PubMed

Savanger, P. (2001). Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition. Bioessays23, 912–923.Search in Google Scholar

Semb, H. and Christofori, G. (1998). The tumor-suppressor function of E-cadherin. Am. J. Hum. Genet.63, 1588–1593.10.1086/302173Search in Google Scholar PubMed PubMed Central

Shimizu, C., Yoshida, S., Shibata, M., Kato, K., Momota, Y., Matsumoto, K., Shiosaka, T., Midorikawa, R., Kamachi, T., Kawabe, A., and Shiosaka, S. (1998). Characterization of recombinant and brain neuropsin, a plasticity-related serine protease. J. Biol. Chem.273, 11189–11196.10.1074/jbc.273.18.11189Search in Google Scholar PubMed

Shook, D. and Keller, R. (2003). Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mech. Dev.120, 1351–1383.10.1016/j.mod.2003.06.005Search in Google Scholar PubMed

Slater, M.D., Lauer, C., Gidley-Baird, A., and Barden, J.A. (2003). Markers for the development of early prostate cancer. J. Pathol.199, 368–377.10.1002/path.1258Search in Google Scholar PubMed

Stenman, U.H., Leinonen, J., Zhang, W.M., and Finne, P. (1999). Prostate-specific antigen. Semin. Cancer Biol.9, 83–93.10.1006/scbi.1998.0086Search in Google Scholar PubMed

Stephan, C., Yousef, G.M., Scorilas, A., Jung, K., Jung, M., Kristiansen, G., Hauptmann, S., Bharaj, B.S., Nakamura, T., Loening, S.A., and Diamandis, E.P. (2003). Quantitative analysis of kallikrein 15 gene expression in prostate tissue. J. Urol.169, 361–364.10.1097/00005392-200301000-00107Search in Google Scholar

Sun, X.Y., Donald, S.P., and Phang, J.M. (2001). Testosterone and prostate-specific antigen stimulate generation of reactive oxygen species in prostate cancer cells. Carcinogenesis22, 1775–1780.10.1093/carcin/22.11.1775Search in Google Scholar PubMed

Takayama, T.K., Fujikawa, K., and Davie, E.W. (1997). Characterization of the precursor of prostate-specific antigen. Activation by trypsin and by human glandular kallikrein. J. Biol. Chem.272, 21582–21588.10.1074/jbc.272.34.21582Search in Google Scholar PubMed

Takayama, T.K., McMullen, B.A., Nelson, P.S., Matsumura, M., and Fujikawa, K. (2001a). Characterization of hK4 (prostase), a prostate-specific serine protease: activation of the precursor of prostate specific antigen (pro-PSA) and single-chain urokinase-type plasminogen activator and degradation of prostatic acid phosphatase. Biochemistry40, 15341–15348.10.1021/bi015775eSearch in Google Scholar PubMed

Takayama, T.K., Carter, C.A., and Deng, T. (2001b). Activation of prostate-specific antigen precursor (pro-PSA) by prostin, a novel human prostatic serine protease identified by degenerate PCR. Biochemistry40, 1679–1687.10.1021/bi002129rSearch in Google Scholar PubMed

Tarin, D., Thompson, E.W., and Newgreen, D.F. (2005). The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res.65, 5996–6000; discussion 6000–6001.10.1158/0008-5472.CAN-05-0699Search in Google Scholar PubMed

Thiery, J.P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nat. Rev. Cancer2, 442–454.10.1038/nrc822Search in Google Scholar

Thompson, E.W., Newgreen, D.F., and Tarin, D. (2005). Carcinoma invasion and metastasis: a role for epithelial-mesenchymal transition? Cancer Res.65, 5991–5995; discussion 5995.Search in Google Scholar

Tomita, K., van Bokhoven, A., van Leenders, G.J.L.H., Ruijter, E.T.G., Jansen, C.F., Bussemakers, M.J., and Schalken, J.A. (2000). Cadherin switching in human prostate cancer progression. Cancer Res.60, 3650–3654.Search in Google Scholar

Tschesche, H., Michaelis, J., Kohnert, U., Fedrowitz, J., and Oberhoff, R. (1989). Tissue kallikrein effectively activates latent matrix degrading metalloenzymes. Adv. Exp. Med. Biol.247A, 545–548.10.1007/978-1-4615-9543-4_84Search in Google Scholar

Umbas, R., Schalken, J.A., Aalders, T.W., Carter, B.S., Karthaus, H.F., Schaafsma, H.E., Debruyne, F.M., and Isaacs, W.B. (1992). Expression of the cellular adhesion molecule E-cadherin is reduced or absent in high-grade prostate cancer. Cancer Res.52, 5104–5109.Search in Google Scholar

Veveris-Lowe, T.L., Lawrence, M.G., Collard, R.L., Bui, L., Herington, A.C., Nicol, D.L., and Clements, J.A. (2005). Kallikrein 4 (hK4) and prostate-specific antigen (PSA) are associated with the loss of E-cadherin and an epithelial-mesenchymal transition (EMT)-like effect in prostate cancer cells. Endocr. Relat. Cancer12, 631–643.10.1677/erc.1.00958Search in Google Scholar

Vleminckx, K., Vakaet, L. Jr., Mareel, M., Fiers, W., and van Roy, F. (1991). Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell66, 107–119.10.1016/0092-8674(91)90143-MSearch in Google Scholar

Webber, M.M., Waghray, A., and Bello, D. (1995). Prostate-specific antigen, a serine protease, facilitates human prostate cancer cell invasion. Clin. Cancer Res.1, 1089–1094.Search in Google Scholar

Xi, Z., Klokk, T.I., Korkmaz, K., Kurys, P., Elbi, C., Risberg, B., Danielsen, H., Loda, M., and Saatcioglu, F. (2004). Kallikrein 4 is a predominantly nuclear protein and is overexpressed in prostate cancer. Cancer Res.64, 2365–2370.10.1158/0008-5472.CAN-03-2025Search in Google Scholar PubMed

Yang, J., Mani, S.A., Donaher, J.L., Ramaswamy, S., Itzykson, R.A., Come, C., Savagner, P., Gitelman, I., Richardson, A., and Weinberg, R.A. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell117, 927–939.10.1016/j.cell.2004.06.006Search in Google Scholar PubMed

Yousef, G.M. and Diamandis, E.P. (2001). The new human tissue kallikrein gene family: structure, function, and association to disease. Endocr. Rev.22, 184–204.Search in Google Scholar

Yousef, G.M., Scorilas, A., Jung, K., Ashworth, L.K., and Diamandis, E.P. (2001). Molecular cloning of the human kallikrein 15 gene (KLK15). Up-regulation in prostate cancer. J. Biol. Chem.276, 53–61.10.1074/jbc.M005432200Search in Google Scholar PubMed

Yousef, G.M., Polymeris, M.E., Grass, L., Soosaipillai, A., Chan, P.C., Scorilas, A., Borgono, C., Harbeck, N., Schmalfeldt, B., Dorn, J., et al. (2003). Human kallikrein 5: a potential novel serum biomarker for breast and ovarian cancer. Cancer Res.63, 3958–3965.Search in Google Scholar

Zavadil, J., Cermak, L., Soto-Nieves, N., and Bottinger, E.P. (2004). Integration of TGF-β/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J.23, 1155–1165.10.1038/sj.emboj.7600069Search in Google Scholar PubMed PubMed Central

Zhou, B.P., Deng, J., Xia, W., Xu, J., Li, Y.M., Gunduz, M., and Hung, M.C. (2004). Dual regulation of Snail by GSK-3β-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat. Cell Biol.6, 931–940.10.1038/ncb1173Search in Google Scholar PubMed

Published Online: 2006-06-26
Published in Print: 2006-06-01

©2006 by Walter de Gruyter Berlin New York

Articles in the same Issue

  1. The First International Symposium on Kallikreins
  2. A comprehensive nomenclature for serine proteases with homology to tissue kallikreins
  3. The kallikrein world: an update on the human tissue kallikreins
  4. Cellular distribution of human tissue kallikreins: immunohistochemical localization
  5. The tissue kallikrein-kinin system protects against cardiovascular and renal diseases and ischemic stroke independently of blood pressure reduction
  6. Proteinase-mediated cell signalling: targeting proteinase-activated receptors (PARs) by kallikreins and more
  7. Recombinant kallikrein expression: site-specific integration for hK6 production in human cells
  8. Kallikrein-related peptidase (KLK) family mRNA variants and protein isoforms in hormone-related cancers: do they have a function?
  9. The role of kallikrein-related peptidases in prostate cancer: potential involvement in an epithelial to mesenchymal transition
  10. Human kallikrein 10, a predictive marker for breast cancer
  11. Activation and enzymatic characterization of recombinant human kallikrein 8
  12. Human tissue kallikrein 9: production of recombinant proteins and specific antibodies
  13. The human kallikrein 10 promoter contains a functional retinoid response element
  14. Human kallikrein 4: enzymatic activity, inhibition, and degradation of extracellular matrix proteins
  15. Kallikrein-related peptidase 14 may be a major contributor to trypsin-like proteolytic activity in human stratum corneum
  16. A sensitive proximity ligation assay for active PSA
  17. Multiple mechanisms underlie the aberrant expression of the human kallikrein 6 gene in breast cancer
  18. Expression of the human kallikrein genes 10 (KLK10) and 11 (KLK11) in cancerous and non-cancerous lung tissues
  19. mRNA expression analysis of human kallikrein 11 (KLK11) may be useful in the discrimination of benign prostatic hyperplasia from prostate cancer after needle prostate biopsy
  20. The epigenetic basis for the aberrant expression of kallikreins in human cancers
  21. Improved prostate cancer detection with a human kallikrein 11 and percentage free PSA-based artificial neural network
  22. Overexpression of the human tissue kallikrein genes KLK4, 5, 6, and 7 increases the malignant phenotype of ovarian cancer cells
  23. Inhibition profiles of human tissue kallikreins by serine protease inhibitors
  24. Kallikrein-mediated cell signalling: targeting proteinase-activated receptors (PARs)
Downloaded on 10.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/BC.2006.089/html?lang=en
Scroll to top button