Home Improved prostate cancer detection with a human kallikrein 11 and percentage free PSA-based artificial neural network
Article
Licensed
Unlicensed Requires Authentication

Improved prostate cancer detection with a human kallikrein 11 and percentage free PSA-based artificial neural network

  • Carsten Stephan , Hellmuth-Alexander Meyer , Henning Cammann , Terukazu Nakamura , Eleftherios P. Diamandis and Klaus Jung
Published/Copyright: June 26, 2006
Biological Chemistry
From the journal Volume 387 Issue 6

Abstract

Human kallikrein 11 (hK11) was evaluated in a percentage free PSA-based artificial neural network (ANN) to reduce unnecessary prostate biopsies. Serum samples from 357 patients with (n=132) and without (n=225) prostate cancer (PCa) were analyzed and ANN models were constructed and compared to all parameters. The discriminatory power of hK11 was lower than that of PSA, but receiver operator characteristic (ROC) analyses demonstrated significantly larger areas under the curves for the ANN compared to all other parameters. ANNs with hK11 may lead to a further reduction in unnecessary prostate biopsies, especially when analyzing patients with less than 15% free PSA.

:

Corresponding author

References

Babaian, R.J., Fritsche, H., Ayala, A., Bhadkamkar, V., Johnston, D.A., Naccarato, W., and Zhang, Z. (2000). Performance of a neural network in detecting prostate cancer in the prostate-specific antigen reflex range of 2.5 to 4.0 ng/ml. Urology56, 1000–1006.10.1016/S0090-4295(00)00830-XSearch in Google Scholar

Carlson, G.D., Calvanese, C.B., and Partin, A.W. (1998). An algorithm combining age, total prostate-specific antigen (PSA), and percent free PSA to predict prostate cancer: results on 4298 cases. Urology52, 455–461.10.1016/S0090-4295(98)00205-2Search in Google Scholar

Catalona, W.J., Partin, A.W., Slawin, K.M., Brawer, M.K., Flanigan, R.C., Patel, A., Richie, J.P., deKernion, J.B., Walsh, P.C., Scardino, P.T., et al. (1998). Use of the percentage of free prostate-specific antigen to enhance differentiation of prostate cancer from benign prostatic disease: a prospective multicenter clinical trial. J. Am. Med. Assoc.279, 1542–1547.10.1001/jama.279.19.1542Search in Google Scholar

Diamandis, E.P., Yousef, G.M., Luo, I., Magklara, I., and Obiezu, C.V. (2000). The new human kallikrein gene family: implications in carcinogenesis. Trends Endocrinol. Metab.11, 54–60.10.1016/S1043-2760(99)00225-8Search in Google Scholar

Diamandis, E.P., Okui, A., Mitsui, S., Luo, L.Y., Soosaipillai, A., Grass, L., Nakamura, T., Howarth, D.J., and Yamaguchi, N. (2002). Human kallikrein 11: a new biomarker of prostate and ovarian carcinoma. Cancer Res.62, 295–300.Search in Google Scholar

Djavan, B., Remzi, M., Zlotta, A., Seitz, C., Snow, P., and Marberger, M. (2002). Novel artificial neural network for early detection of prostate cancer. J. Clin. Oncol.20, 921–929.10.1200/JCO.2002.20.4.921Search in Google Scholar

Dreiseitl, S. and Ohno-Machado, L. (2002). Logistic regression and artificial neural network classification models: a methodology review. J. Biomed. Inform.35, 352–359.10.1016/S1532-0464(03)00034-0Search in Google Scholar

Finne, P., Finne, R., Auvinen, A., Juusela, H., Aro, J., Maattanen, L., Hakama, M., Rannikko, S., Tammela, T.L., and Stenman, U. (2000). Predicting the outcome of prostate biopsy in screen-positive men by a multilayer perceptron network. Urology56, 418–422.10.1016/S0090-4295(00)00672-5Search in Google Scholar

Haese, A., Chaudhari, M., Miller, M.C., Epstein, J.I., Huland, H., Palisaar, J., Graefen, M., Hammerer, P., Poole, E.C., O'Dowd, G.J., et al. (2003). Quantitative biopsy pathology for the prediction of pathologically organ-confined prostate carcinoma: a multiinstitutional validation study. Cancer97, 969–978.10.1002/cncr.11153Search in Google Scholar PubMed

Jemal, A., Murray, T., Ward, E., Samuels, A., Tiwari, R.C., Ghafoor, A., Feuer, E.J., and Thun, M.J. (2005). Cancer statistics, 2005. CA Cancer J. Clin.55, 10–30.10.3322/canjclin.55.1.10Search in Google Scholar PubMed

Kairisto, V. and Poola, A. (1995). Software for illustrative presentation of basic clinical characteristics of laboratory tests – GraphROC for Windows. Scand. J. Clin. Lab. Invest.55 (Suppl. 222), 43–60.10.3109/00365519509088450Search in Google Scholar PubMed

Lilja, H., Christensson, A., Dahlen, U., Matikainen, M.T., Nilsson, O., Pettersson, K., and Lövgren, T. (1991). Prostate-specific antigen in serum occurs predominantly in complex with alpha 1-antichymotrypsin. Clin. Chem.37, 1618–1625.10.1093/clinchem/37.9.1618Search in Google Scholar

Magklara, A., Scorilas, A., Stephan, C., Kristiansen, G.O., Hauptmann, S., Jung, K., and Diamandis, E.P. (2000). Decreased concentrations of prostate-specific antigen and human glandular kallikrein 2 in malignant versus nonmalignant prostatic tissue. Urology56, 527–532.10.1016/S0090-4295(00)00621-XSearch in Google Scholar

Nakamura, T., Mitsui, S., Okui, A., Kominami, K., Nomoto, T., Ukimura, O., Kawauchi, A., Miki, T., and Yamaguchi, N. (2001). Alternative splicing isoforms of hippostasin (PRSS20/KLK11) in prostate cancer cell lines. Prostate49, 72–78.10.1002/pros.1119Search in Google Scholar

Nakamura, T., Scorilas, A., Stephan, C., Jung, K., Soosaipillai, A.R., and Diamandis, E.P. (2003a). The usefulness of serum human kallikrein 11 for discriminating between prostate cancer and benign prostatic hyperplasia. Cancer Res.63, 6543–6546.Search in Google Scholar

Nakamura, T., Stephan, C., Scorilas, A., Yousef, G.M., Jung, K., and Diamandis, E.P. (2003b). Quantitative analysis of hippo-stasin/KLK11 gene expression in cancerous and noncancerous prostatic tissues. Urology61, 1042–1046.10.1016/S0090-4295(02)02443-3Search in Google Scholar

Polascik, T.J., Oesterling, J.E., and Partin, A.W. (1999). Prostate specific antigen: a decade of discovery – what we have learned and where we are going. J. Urol.162, 293–306.10.1097/00005392-199908000-00003Search in Google Scholar

Reckwitz, T., Potter, S.R., Snow, P.B., Zhang, Z., Veltri, R.W., and Partin, A.W. (1999). Artificial neural networks in urology: update 2000. Prostate Cancer Prostatic Dis.2, 222–226.10.1038/sj.pcan.4500374Search in Google Scholar PubMed

Stavropoulou, P., Gregorakis, A.K., Plebani, M., and Scorilas, A. (2005). Expression analysis and prognostic significance of human kallikrein 11 in prostate cancer. Clin. Chim. Acta357, 190–195.10.1016/j.cccn.2005.03.026Search in Google Scholar PubMed

Stenman, U.H. (1997). Prostate-specific antigen, clinical use and staging: an overview. Br. J. Urol.79 (Suppl. 1), 53–60.10.1111/j.1464-410X.1997.tb00802.xSearch in Google Scholar

Stenman, U.H., Leinonen, J., Alfthan, H., Rannikko, S., Tuhkanen, K., and Alfthan, O. (1991). A complex between prostate-specific antigen and α1-antichymotrypsin is the major form of prostate-specific antigen in serum of patients with prostatic cancer: assay of the complex improves clinical sensitivity for cancer. Cancer Res.51, 222–226.Search in Google Scholar

Stenman, U.H., Abrahamsson, P.A., Aus, G., Lilja, H., Bangma, C., Hamdy, F.C., Boccon-Gibod, L., and Ekman, P. (2005). Prognostic value of serum markers for prostate cancer. Scand. J. Urol. Nephrol. (suppl.) 216, 64–81.10.1080/03008880510030941Search in Google Scholar PubMed

Stephan, C., Jung, K., Lein, M., Sinha, P., Schnorr, D., and Loening, S.A. (2000). Molecular forms of prostate-specific antigen and human kallikrein 2 as promising tools for early diagnosis of prostate cancer. Cancer Epidemiol. Biomarkers Prev.9, 1133–1147.Search in Google Scholar

Stephan, C., Cammann, H., Semjonow, A., Diamandis, E.P., Wymenga, L.F.A., Lein, M., Sinha, P., Loening, S.A., and Jung, K. (2002a). Multicenter evaluation of an artificial neural network to increase prostate cancer detection rate and reduce unnecessary biopsies. Clin. Chem.48, 1279–1287.10.1093/clinchem/48.8.1279Search in Google Scholar

Stephan, C., Jung, K., Cammann, H., Vogel, B., Brux, B., Kristiansen, G., Rudolph, B., Hauptmann, S., Lein, M., Schnorr, D., et al. (2002b). An artificial neural network considerably improves the diagnostic power of percent free prostate-specific antigen in prostate cancer diagnosis: results of a 5-year investigation. Int. J. Cancer99, 466–473.10.1002/ijc.10370Search in Google Scholar PubMed

Stephan, C., Jung, K., and Sinha, P. (2002c). Tumor markers for prostatic cancer – which way in this millenium? Res. Adv. Cancer2, 147–157.Search in Google Scholar

Stephan, C., Vogel, B., Cammann, H., Lein, M., Klevecka, V., Sinha, P., Kristiansen, G., Schnorr, D., Jung, K., and Loening, S.A. (2003). Nutzung von artifiziellen neuronalen Netzwerken zur Risikoabschätzung eines Prostatakarzinoms: Biopsieindikationen im PSA-Bereich 2–20 μg/l. Urologe A42, 1221–1229.10.1007/s00120-003-0322-7Search in Google Scholar PubMed

Stephan, C., Cammann, H., and Jung, K. (2005a). Viewpoint: artificial neural networks: has the time come for their use in prostate cancer patients? Nat. Clin. Pract. Urol.2, 262–263.10.1038/ncpuro0207Search in Google Scholar PubMed

Stephan, C., Jung, K., Soosaipillai, A., Yousef, G.M., Cammann, H., Meyer, H., Xu, C., and Diamandis, E.P. (2005b). Clinical utility of human glandular kallikrein 2 within a neural network for prostate cancer detection. BJU Int.96, 521–527.10.1111/j.1464-410X.2005.05677.xSearch in Google Scholar PubMed

Veltri, R.W., Chaudhari, M., Miller, M.C., Poole, E.C., O'Dowd, G.J., and Partin, A.W. (2002). Comparison of logistic regression and neural net modeling for prediction of prostate cancer pathologic stage. Clin. Chem.48, 1828–1834.10.1093/clinchem/48.10.1828Search in Google Scholar

Virtanen, A., Gomari, M., Kranse, R., and Stenman, U.H. (1999). Estimation of prostate cancer probability by logistic regression: free and total prostate-specific antigen, digital rectal examination, and heredity are significant variables. Clin. Chem.45, 987–994.10.1093/clinchem/45.7.987Search in Google Scholar

Published Online: 2006-06-26
Published in Print: 2006-06-01

©2006 by Walter de Gruyter Berlin New York

Articles in the same Issue

  1. The First International Symposium on Kallikreins
  2. A comprehensive nomenclature for serine proteases with homology to tissue kallikreins
  3. The kallikrein world: an update on the human tissue kallikreins
  4. Cellular distribution of human tissue kallikreins: immunohistochemical localization
  5. The tissue kallikrein-kinin system protects against cardiovascular and renal diseases and ischemic stroke independently of blood pressure reduction
  6. Proteinase-mediated cell signalling: targeting proteinase-activated receptors (PARs) by kallikreins and more
  7. Recombinant kallikrein expression: site-specific integration for hK6 production in human cells
  8. Kallikrein-related peptidase (KLK) family mRNA variants and protein isoforms in hormone-related cancers: do they have a function?
  9. The role of kallikrein-related peptidases in prostate cancer: potential involvement in an epithelial to mesenchymal transition
  10. Human kallikrein 10, a predictive marker for breast cancer
  11. Activation and enzymatic characterization of recombinant human kallikrein 8
  12. Human tissue kallikrein 9: production of recombinant proteins and specific antibodies
  13. The human kallikrein 10 promoter contains a functional retinoid response element
  14. Human kallikrein 4: enzymatic activity, inhibition, and degradation of extracellular matrix proteins
  15. Kallikrein-related peptidase 14 may be a major contributor to trypsin-like proteolytic activity in human stratum corneum
  16. A sensitive proximity ligation assay for active PSA
  17. Multiple mechanisms underlie the aberrant expression of the human kallikrein 6 gene in breast cancer
  18. Expression of the human kallikrein genes 10 (KLK10) and 11 (KLK11) in cancerous and non-cancerous lung tissues
  19. mRNA expression analysis of human kallikrein 11 (KLK11) may be useful in the discrimination of benign prostatic hyperplasia from prostate cancer after needle prostate biopsy
  20. The epigenetic basis for the aberrant expression of kallikreins in human cancers
  21. Improved prostate cancer detection with a human kallikrein 11 and percentage free PSA-based artificial neural network
  22. Overexpression of the human tissue kallikrein genes KLK4, 5, 6, and 7 increases the malignant phenotype of ovarian cancer cells
  23. Inhibition profiles of human tissue kallikreins by serine protease inhibitors
  24. Kallikrein-mediated cell signalling: targeting proteinase-activated receptors (PARs)
Downloaded on 20.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/BC.2006.101/html
Scroll to top button