Truncated PrPc in mammalian brain: interspecies variation and location in membrane rafts
-
Isabelle Laffont-Proust
Abstract
A key molecular event in prion diseases is the conversion of cellular prion protein (PrPc) into an abnormal misfolded conformer (PrPsc). The PrPc N-terminal domain plays a central role in PrPc functions and in prion propagation. Because mammalian PrPc is found as a full-length and N-terminally truncated form, we examined the presence and amount of PrPc C-terminal fragment in the brain of different species. We found important variations between primates and rodents. In addition, our data show that the PrPc fragment is present in detergent-resistant raft domains, a membrane domain of critical importance for PrPc functions and its conversion into PrPsc.
References
Brown, D.R. (2003). Prion protein expression modulates neuronal copper content. J. Neurochem.87, 377–385.10.1046/j.1471-4159.2003.02046.xSearch in Google Scholar PubMed
Brown, D.R., Qin, K., Herms, J.W., Madlung, A., Manson, J., Strome, R., Fraser, P.E., Kruck, T., von Bohlen, A., Schulz-Schaeffer, W., et al. (1997). The cellular prion protein binds copper in vivo. Nature390, 684–687.10.1038/37783Search in Google Scholar PubMed
Chen, S.G., Teplow, D.B., Parchi, P., Teller, J.K., Gambetti, P., and Autilio-Gambetti, L. (1995). Truncated forms of the human prion protein in normal brain and in prion diseases. J. Biol. Chem.270, 19173–19180.10.1074/jbc.270.32.19173Search in Google Scholar PubMed
Demart, S., Fournier, J.G., Creminon, C., Frobert, Y., Lamoury, F., Marce, D., Lasmezas, C.I., Dormont, D., Grassi, J., and Deslys, J.P. (1999). New insight into abnormal prion protein using monoclonal antibodies. Biochem. Biophys. Res. Commun.265, 652–657.10.1006/bbrc.1999.1730Search in Google Scholar PubMed
Edenhofer, F., Rieger, R., Famulok, M., Wendler, W., Weiss, S., and Winnacker, E.L. (1996). Prion protein PrPSc interacts with molecular chaperones of the Hsp60 family. J. Virol.70, 4724–4728.10.1128/jvi.70.7.4724-4728.1996Search in Google Scholar
Flechsig, E., Shmerling, D., Hegyi, I., Raeber, A.J., Fischer, M., Cozzio A., von Mering, C., Aguzzi, A., and Weissmann, C. (2000). Prion protein devoid of the octapeptide repeat region restores susceptibility to scrapie in PrP knockout mice. Neuron27, 399–408.10.1016/S0896-6273(00)00046-5Search in Google Scholar PubMed
Gauczynski, S., Peyrin, J.-M., Haik, S., Leucht, C., Hundt, C., Rieger, R., Krasemann, S., Deslys, J.P., Dormont, D., Lasmezas, C.I., and Weiss, S. (2001). The 37-kDa/67-kDa laminin receptor acts as the cell-surface receptor for cellular prion protein. EMBO J.20, 5863–5875.10.1093/emboj/20.21.5863Search in Google Scholar PubMed PubMed Central
Hugel, B., Martinez, M.C., Kunzelmann, C., Blattler, T., Aguzzi, A., and Freyssinet, J.M. (2004). Modulation of signal transduction through the cellular prion protein is linked to its incorporation in lipid rafts. Cell. Mol. Life Sci.61, 2998–3007.10.1007/s00018-004-4318-2Search in Google Scholar PubMed
Hundt, C., Peyrin, J.M., Haïk, S., Gauczynski, S., Leucht, C., Rieger R., Riley, M.L., Deslys, J.P., Dormont, D., Lasmezas, C.I., and Weiss, S. (2001). Identification of interaction domains of the prion protein with its 37-kDa/67-kDa laminin receptor. EMBO J.20, 5876–5886.10.1093/emboj/20.21.5876Search in Google Scholar PubMed PubMed Central
Korte, S., Vassallo, N., Kramer, M.L., Kretzschmar, H.A., and Herms, J. (2003). Modulation of L-type voltage-gated calcium channels by recombinant prion protein. J. Neurochem.87, 1037–1042.10.1046/j.1471-4159.2003.02080.xSearch in Google Scholar PubMed
Laffont-Proust, I., Faucheux, B.A., Hässig, R., Sazdovitch, V., Simon, S., Grassi, J., Hauw, J.-J., Moya, K.L., and Haïk, S. (2005). The N-terminal cleavage of cellular prion protein in the human brain. FEBS Lett.579, 6333–6337.10.1016/j.febslet.2005.10.013Search in Google Scholar PubMed
Lawson, V.A., Priola, S.A., Wehrly, K., and Chesebro, B. (2001). N-Terminal truncation of prion protein affects both formation and conformation of abnormal protease resistant prion protein generated in vitro. J. Biol. Chem.276, 35265–35271.10.1074/jbc.M103799200Search in Google Scholar PubMed
Madore, N., Smith, K.L., Graham, C.H., Jen, A., Brady, K., Hall, S., and Morris, R. (1999). Functionally different GPI proteins are organized in different domains on the neuronal surface. EMBO J.18, 6917–6926.10.1093/emboj/18.24.6917Search in Google Scholar PubMed PubMed Central
Maglio, L.E., Perez, M.F., Martins, V.R., Brentani, R.R., and Ramirez, O.A. (2004). Hippocampal synaptic plasticity in mice devoid of cellular prion protein. Mol. Brain Res.131, 58–64.10.1016/j.molbrainres.2004.08.004Search in Google Scholar PubMed
Mouillet-Richard, S., Ermonval, M., Chebassier, C., Laplanche, J.L., Lehmann, S., Launay, J.M., and Kellermann, O. (2000). Signal transduction through prion protein. Science289, 1925–1928.10.1126/science.289.5486.1925Search in Google Scholar PubMed
Moya, K.L., Hassig, R., Breen, K.C., Volland, H., and Di Giamberardino, L. (2005). Axonal transport of the cellular prion protein is increased during axon regeneration. J. Neurochem.92, 1044–1053.10.1111/j.1471-4159.2004.02940.xSearch in Google Scholar PubMed
Prusiner, S.B. (1998). Prions. Proc. Natl. Acad. Sci. USA95, 13363–13383.10.1073/pnas.95.23.13363Search in Google Scholar PubMed PubMed Central
Shyng, S.L., Huber, M.T., and Harris, D.A. (1993). A prion protein cycles between the cell surface and an endocytic compartment in cultured neuroblastoma cells. J. Biol. Chem.268, 15922–15928.10.1016/S0021-9258(18)82340-7Search in Google Scholar
Shyng, S.-L., Lehmann, S., Moulder, K.L., and Harris, D.A. (1995). Sulfated glycans stimulate endocytosis of the cellular isoform of the prion protein, PrPC, in cultured cells. J. Biol. Chem.270, 30221–30229.10.1074/jbc.270.50.30221Search in Google Scholar PubMed
Sunyach, C., Jen, A., Deng, J., Fitzgerald, K.T., Frobert, Y., Grassi J., McCaffrey, M.W., and Morris, R. (2003). The mechanism of internalization of glycosylphosphatidylinositol-anchored prion protein. EMBO J.22, 3591–3601.10.1093/emboj/cdg344Search in Google Scholar PubMed PubMed Central
Taraboulos, A., Scott, M., Semenov, A., Avrahami, D., Laszlo, L., and Prusiner, S.B. (1995). Cholesterol depletion and modification of COOH-terminal targeting sequence of the prion protein inhibit formation of the scrapie isoform. J. Cell. Biol.129, 121–132.10.1083/jcb.129.1.121Search in Google Scholar PubMed PubMed Central
Vassallo, N., Herms, J., Behrens, C., Krebs, B., Saeki, K., Onodera, T., Windl, O., and Kretzschmar, H.A. (2005). Activation of phosphatidylinositol 3-kinase by cellular prion protein and its role in cell survival. Biochem. Biophys. Res. Commun.332, 75–82.10.1016/j.bbrc.2005.04.099Search in Google Scholar PubMed
Vincent, B., Paitel, E., Saftig, P., Frobert, Y., Hartmann, D., De Strooper, B., Grassi J., Lopez-Perez, E., and Checler, F. (2001). The disintegrins ADAM10 and TACE contribute to the constitutive and phorbol ester-regulated normal cleavage of the cellular prion protein. J. Biol. Chem.276, 37743–37746.10.1074/jbc.M105677200Search in Google Scholar PubMed
Walmsley, A.R., Zeng, F., and Hooper, N.M. (2003). The N-terminal region of the prion protein ectodomain contains a lipid raft targeting determinant. J. Biol. Chem.278, 37241–37248.10.1074/jbc.M302036200Search in Google Scholar PubMed
Weissmann, C., and Flechsig, I. (2003). PrP knock-out and PrP transgenic mice in prion research. Br. Med. Bull.66, 43–60.10.1093/bmb/66.1.43Search in Google Scholar PubMed
©2006 by Walter de Gruyter Berlin New York
Articles in the same Issue
- Striated domains: self-organizing ordered assemblies of transmembrane α-helical peptides and lipids in bilayers
- Evolution of kallikrein-related peptidases in mammals and identification of a genetic locus encoding potential regulatory inhibitors
- Rec A-independent homologous recombination induced by a putative fold-back tetraplex DNA
- Spontaneous DNA-DNA interaction of homologous duplexes and factors affecting the result of heteroduplex formation
- DNA end-joining driven by microhomologies catalyzed by nuclear extracts
- A role for transmembrane domains V and VI in ligand binding and maturation of the angiotensin II AT1 receptor
- The zinc finger protein ZNF297B interacts with BDP1, a subunit of TFIIIB
- Pressure- and temperature-induced unfolding studies: thermodynamics of core hydrophobicity and packing of ribonuclease A
- Truncated PrPc in mammalian brain: interspecies variation and location in membrane rafts
- Endotoxin-like properties of a rhamnolipid exotoxin from Burkholderia (Pseudomonas) plantarii: immune cell stimulation and biophysical characterization
- p190-RhoGAP as an integral component of the Tiam1/Rac1-induced downregulation of Rho
- Human plasma adenosine deaminase 2 is secreted by activated monocytes
- Inhibition of mRNA deadenylation and degradation by different types of cell stress
- Identification of calpain cleavage sites in the G1 cyclin-dependent kinase inhibitor p19INK4d
- Identification of candidate substrates for ectodomain shedding by the metalloprotease-disintegrin ADAM8
Articles in the same Issue
- Striated domains: self-organizing ordered assemblies of transmembrane α-helical peptides and lipids in bilayers
- Evolution of kallikrein-related peptidases in mammals and identification of a genetic locus encoding potential regulatory inhibitors
- Rec A-independent homologous recombination induced by a putative fold-back tetraplex DNA
- Spontaneous DNA-DNA interaction of homologous duplexes and factors affecting the result of heteroduplex formation
- DNA end-joining driven by microhomologies catalyzed by nuclear extracts
- A role for transmembrane domains V and VI in ligand binding and maturation of the angiotensin II AT1 receptor
- The zinc finger protein ZNF297B interacts with BDP1, a subunit of TFIIIB
- Pressure- and temperature-induced unfolding studies: thermodynamics of core hydrophobicity and packing of ribonuclease A
- Truncated PrPc in mammalian brain: interspecies variation and location in membrane rafts
- Endotoxin-like properties of a rhamnolipid exotoxin from Burkholderia (Pseudomonas) plantarii: immune cell stimulation and biophysical characterization
- p190-RhoGAP as an integral component of the Tiam1/Rac1-induced downregulation of Rho
- Human plasma adenosine deaminase 2 is secreted by activated monocytes
- Inhibition of mRNA deadenylation and degradation by different types of cell stress
- Identification of calpain cleavage sites in the G1 cyclin-dependent kinase inhibitor p19INK4d
- Identification of candidate substrates for ectodomain shedding by the metalloprotease-disintegrin ADAM8