Startseite Species-specific antibiotic-ribosome interactions: implications for drug development
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Species-specific antibiotic-ribosome interactions: implications for drug development

  • Daniel N. Wilson , Jörg M. Harms , Knud H. Nierhaus , Frank Schlünzen und Paola Fucini
Veröffentlicht/Copyright: 9. Dezember 2005
Biological Chemistry
Aus der Zeitschrift Band 386 Heft 12

Abstract

In the cell, the protein synthetic machinery is a highly complex apparatus that offers many potential sites for functional interference and therefore represents a major target for antibiotics. The recent plethora of crystal structures of ribosomal subunits in complex with various antibiotics has provided unparalleled insight into their mode of interaction and inhibition. However, differences in the conformation, orientation and position of some of these drugs bound to ribosomal subunits of Deinococcus radiodurans (D50S) compared to Haloarcula marismortui (H50S) have raised questions regarding the species specificity of binding. Revisiting the structural data for the bacterial D50S-antibiotic complexes reveals that the mode of binding of the macrolides, ketolides, streptogramins and lincosamides is generally similar to that observed in the archaeal H50S structures. However, small discrepancies are observed, predominantly resulting from species-specific differences in the ribosomal proteins and rRNA constituting the drug-binding sites. Understanding how these small alterations at the binding site influence interaction with the drug will be essential for rational design of more potent inhibitors.

:

Corresponding author

References

Ban, N., Nissen, P., Hansen, J., Moore, P.B., and Steitz, T.A. (2000). The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science289, 905–920.Suche in Google Scholar

Baram, D., Pyetan, E., Sittner, A., Auerbach-Nevo, T., Bashan, A., and Yonath, A. (2005). Structure of trigger factor binding domain in biologically homologous complex with eubacterial ribosome reveals its chaperone action. Proc. Natl. Acad. Sci. USA102, 12017–22.10.1073/pnas.0505581102Suche in Google Scholar

Berisio, R., Harms, J., Schluenzen, F., Zarivach, R., Hansen, H., Fucini, P., and Yonath, A. (2003). Structural insight into the antibiotic action of telithromycin on resistant mutants. J. Bacteriol.185, 4276–4279.10.1128/JB.185.14.4276-4279.2003Suche in Google Scholar

Canu, A. and Leclercq, R. (2001). Overcoming bacterial resistance by dual target inhibition: the case of streptogramins. Curr. Drug Targets Infect. Disord.1, 215–225.10.2174/1568005014606152Suche in Google Scholar

Canu, A., Malbruny, B., Coquemont, M., Davies, T.A., Appelbaum, P.C., and Leclercq, R. (2002). Diversity of ribosomal mutations conferring resistance to macrolides, clindamycin, streptogramin, and telithromycin in Streptococcus pneumoniae. Antimicrob. Agents Chemother.46, 125–131.10.1128/AAC.46.1.125-131.2002Suche in Google Scholar

Carter, A.P., Clemons, W.M., Brodersen, D.E., Morgan-Warren, R.J., Wimberly, B.T., and Ramakrishnan, V. (2000). Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature407, 340–348.10.1038/35030019Suche in Google Scholar

Carter, A.P., Clemons, W.M. Jr., Brodersen, D.E., Morgan-Warren, R.J., Hartsch, T., Wimberly, B.T., and Ramakrishnan, V. (2001). Crystal structure of an initiation factor bound to the 30S ribosomal subunit. Science291, 498–501.10.1126/science.1057766Suche in Google Scholar

Chinali, G., Moureau, P., and Cocito, C. (1984). The action of virginiamycin M on the acceptor, donor, and catalytic sites of peptidyltransferase. J. Biol. Chem.259, 9563–9568.10.1016/S0021-9258(17)42737-2Suche in Google Scholar

Chittum, H.S. and Champney, W.S. (1994). Ribosomal protein gene sequence changes in erythromycin-resistant mutants of Escherichia coli. J. Bacteriol.176, 6192–6198.10.1128/jb.176.20.6192-6198.1994Suche in Google Scholar PubMed PubMed Central

Clark, C., Bozdogan, B., Peric, M., Dewasse, B., Jacobs, M., and Appelbaum, P. (2002). In vitro selection of resistance in Haemophilus influenzae by amoxicillin-clavulanate, cefpodoxime, cefprozil, azithromycin, and clarithromycin. Antimicrob. Agents Chemother.46, 2956–2962.10.1128/AAC.46.9.2956-2962.2002Suche in Google Scholar PubMed PubMed Central

Cocito, C., Di Giambattista, M., Nyssen, E., and Vannuffel, P. (1997). Inhibition of protein synthesis by streptogramins and related antibiotics. J. Antimicrob. Chemother.39, 7–13.10.1093/jac/39.suppl_1.7Suche in Google Scholar PubMed

Depardieu, F. and Courvalin, P. (2001). Mutation in 23S rRNA responsible for resistance to 16-membered macrolides and streptogramins in Streptococcus pneumoniae. Antimicrob. Agents Chemother.45, 319–323.10.1128/AAC.45.1.319-323.2001Suche in Google Scholar

Diaconu, M., Kothe, U., Schlünzen, F., Fischer, N., Harms, J., Tonevitski, A., Stark, H., Rodnina, M., and Wahl, M. (2005). Structural basis for the function of the ribosomal L7/12 stalk in factor binding and GTPase activation. Cell121, 991–1004.10.1016/j.cell.2005.04.015Suche in Google Scholar

Dinos, G., Michelinaki, M., and Kalpaxis, D. (2001). Insights into the mechanism of azithromycin interaction with an Escherichia coli functional ribosomal complex. Mol. Pharmacol.59, 1441–1445.10.1124/mol.59.6.1441Suche in Google Scholar

Douthwaite, S. (1992). Interaction of the antibiotics clindamycin and lincomycin with Escherichia coli 23S ribosomal RNA. Nucleic Acids Res.20, 4717–4720.10.1093/nar/20.18.4717Suche in Google Scholar

Ferbitz, L., Maier, T., Patzelt, H., Bukau, B., Deuerling, E., and Ban, N. (2004). Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature431, 590–596.10.1038/nature02899Suche in Google Scholar

Franceschi, F., Kanyo, Z., Sherer, E., and Sutcliffe, J. (2004). Macrolide resistance from the ribosome perspective. Curr. Drug Targets Infect. Disord.4, 177–191.10.2174/1568005043340740Suche in Google Scholar

Gale, E.F., Cundliffe, E., Reynolds, P.E., Richmond, M.H., and Waring, M.J. (1981). Antibiotic inhibitors of ribosome function. In: The Molecular Basis of Antibiotic Action (Bristol, UK: John Wiley and Sons), pp. 278–379.Suche in Google Scholar

Garza-Ramos, G., Xiong, L., Zhong, P., and Mankin, A. (2001). Binding site of macrolide antibiotics on the ribosome: new resistance mutation identifies a specific interaction of ketolides with rRNA. J. Bacteriol.183, 6898–907.10.1128/JB.183.23.6898-6907.2001Suche in Google Scholar

Gregory, S.T. and Dahlberg, A.E. (1999). Erythromycin resistance mutations in ribosomal proteins L22 and L4 perturb the higher order structure of 23S ribosomal RNA. J. Mol. Biol.289, 827–834.10.1006/jmbi.1999.2839Suche in Google Scholar

Hansen, J.L., Ippolito, J.A., Ban, N., Nissen, P., Moore, P.B., and Steitz, T.A. (2002). The structures of four macrolide antibiotics bound to the large ribosomal subunit. Mol. Cell10, 117–128.10.1016/S1097-2765(02)00570-1Suche in Google Scholar

Hansen, J.L., Moore, P.B., and Steitz, T.A. (2003). Structures of five antibiotics bound at the peptidyl transferase center of the large ribosomal subunit. J. Mol. Biol.330, 1061–1075.10.1016/S0022-2836(03)00668-5Suche in Google Scholar

Harms, J., Schlünzen, F., Zarivach, R., Bashan, A., Gat, S., Agmon, I., Bartels, H., Franceschi, F., and Yonath, A. (2001). High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell107, 679–688.10.1016/S0092-8674(01)00546-3Suche in Google Scholar

Harms, J., Schlünzen, F., Fucini, P., Bartels, H., and Yonath, A. (2004). Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin. BMC Biol.2, 4.10.1186/1741-7007-2-4Suche in Google Scholar

Jenni, S. and Ban, N. (2003). The chemistry of protein synthesis and voyage through the ribosomal tunnel. Curr. Opin. Struct. Biol.13, 212–219.10.1016/S0959-440X(03)00034-4Suche in Google Scholar

Liu, M. and Douthwaite, S. (2002). Activity of the ketolide telithromycin is refractory to Erm monomethylation of bacterial rRNA. Antimicrob. Agents Chemother.46, 1629–1633.10.1128/AAC.46.6.1629-1633.2002Suche in Google Scholar

Mankin, A.S. (2001). Ribosomal antibiotics. Mol. Biol.35, 509–520.10.1023/A:1010510623805Suche in Google Scholar

Nyssen, E., Di Giambattista, M., and Cocito, C. (1989). Analysis of the reversible binding of virginiamycin M to ribosome and particle functions after removal of the antibiotic. Biochim. Biophys. Acta1009, 39–46.10.1016/0167-4781(89)90076-6Suche in Google Scholar

Ogle, J.M., Brodersen, D.E., Clemons W.M. Jr., Tarry, M.J., Carter, A.P., and Ramakrishnan, V. (2001). Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science292, 897–902.10.1126/science.1060612Suche in Google Scholar

Okamoto, H., Miyazaki, S., Tateda, K., Ishii, Y., and Yamaguchi, K. (2001). In vivo efficacy of telithromycin (HMR3647) against Streptococcus pneumoniae and Haemophilus influenzae. Antimicrob. Agents Chemother.45, 3250–3252.10.1128/AAC.45.11.3250-3252.2001Suche in Google Scholar

Parfait, R. and Cocito, C. (1980). Lasting damage to bacterial ribosomes by reversibly bound virginiamycin M. Proc. Natl. Acad. Sci. USA77, 5492–5496.10.1073/pnas.77.9.5492Suche in Google Scholar

Parfait, R., Di Giambattista, M., and Cocito, C. (1981). Competition between erythromycin and virginiamycin for in vitro binding to the large ribosomal subunit. Biochim. Biophys. Acta654, 236–241.10.1016/0005-2787(81)90177-5Suche in Google Scholar

Pfister, P., Jenni, S., Poehlsgaard, J., Thomas, A., Douthwaite, S., Ban, N., and Bottger, E. (2004). The structural basis of macrolide-ribosome binding assessed using mutagenesis of 23S rRNA positions 2058 and 2059. J. Mol. Biol.342, 1569–1581.10.1016/j.jmb.2004.07.095Suche in Google Scholar

Pioletti, M., Schlünzen, F., Harms, J., Zarivach, R., Gluhmann, M., Avila, H., Bashan, A., Bartels, H., Auerbach, T., Jacobi, C., et al. (2001). Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3. EMBO J.20, 1829–1839.10.1093/emboj/20.8.1829Suche in Google Scholar

Poehlsgaard, J. and Douthwaite, S. (2003). Macrolide antibiotic interaction and resistance on the bacterial ribosome. Curr. Opin. Invest. Drugs4, 140–148.Suche in Google Scholar

Porse, B.T. and Garrett, R.A. (1999). Sites of interaction of streptogramin A and B antibiotics in the peptidyl transferase loop of 23 S rRNA and the synergism of their inhibitory mechanisms. J. Mol. Biol.286, 375–387.10.1006/jmbi.1998.2509Suche in Google Scholar

Rodriguez-Fonseca, C., Amils, R., and Garrett, R.A. (1995). Fine structure of the peptidyl transferase centre on 23 S-like rRNAs deduced from chemical probing of antibiotic-ribosome complexes. J. Mol. Biol.247, 224–235.10.1006/jmbi.1994.0135Suche in Google Scholar

Schlünzen, F., Tocilj, A., Zarivach, R., Harms, J., Gluehmann, M., Janell, D., Bashan, A., Bartels, H., Agmon, I., Franceschi, F., and Yonath, A. (2000). Structure of functionally activated small ribosomal subunit at 3.3 Å resolution. Cell102, 615–623.10.1016/S0092-8674(00)00084-2Suche in Google Scholar

Schlünzen, F., Zarivach, R., Harms, J., Bashan, A., Tocilj, A., Albrecht, R., Yonath, A., and Franceschi, F. (2001). Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature413, 814–821.10.1038/35101544Suche in Google Scholar

Schlünzen, F., Harms, J.M., Franceschi, F., Hansen, H.A., Bartels, H., Zarivach, R., and Yonath, A. (2003). Structural basis for the antibiotic activity of ketolides and azalides. Structure (Camb.)11, 329–338.10.1016/S0969-2126(03)00022-4Suche in Google Scholar

Schlünzen, F., Wilson, D., Tian, P., Harms, J., McInnes, S., HAS, H., Albrecht, R., Buerger, J., Wilbanks, S., and Fucini, P. (2005). The binding mode of the trigger factor on the ribosome: implications for protein folding and SRP interaction. Structure (Camb.)13, 1–15.10.1016/j.str.2005.08.007Suche in Google Scholar

Spizek, J., Novotna, J., and Rezanka, T. (2004). Lincosamides: chemical structure, biosynthesis, mechanism of action, resistance, and applications. Adv. Appl. Microbiol.56, 121–154.10.1016/S0065-2164(04)56004-5Suche in Google Scholar

Sumbatyan, N., Korshunova, G., and Bogdanov, A. (2003). Peptide derivatives of antibiotics tylosin and desmycosin, protein synthesis inhibitors. Biochemistry (Moscow)68, 1156–1158.10.1023/A:1026318914546Suche in Google Scholar

Tenson, T. and Ehrenberg, M. (2002). Regulatory nascent peptides in the ribosomal tunnel. Cell108, 591–594.10.1016/S0092-8674(02)00669-4Suche in Google Scholar

Tu, D., Blaha, G., Moore, P., and Steitz, T. (2005a). Gene replacement in Haloarcula marismortui: construction of a strain with two of its three chromosomal rRNA operons deleted. Extremophiles (Epub ahead of print; DOI 10.1007/s00792-005-0459-y).10.1007/s00792-005-0459-ySuche in Google Scholar

Tu, D., Blaha, G., Moore, P., and Steitz, T. (2005b). Structures of MLSBK antibiotics bound to mutated large ribosomal sub-units provide a structural explanation for resistance. Cell121, 257–270.10.1016/j.cell.2005.02.005Suche in Google Scholar

Vannuffel, P. and Cocito, C. (1996). Mechanism of action of streptogramins and macrolides. Drugs51, 20–30.10.2165/00003495-199600511-00006Suche in Google Scholar

Vannuffel, P., Di Giambattista, M., and Cocito, C. (1992). The role of rRNA bases in the interaction of peptidyltransferase inhibitors with bacterial ribosomes. J. Biol. Chem.267, 16114–16120.10.1016/S0021-9258(18)41974-6Suche in Google Scholar

Vannuffel, P., Di Giambattista, M., and Cocito, C. (1994). Chemical probing of a virginiamycin M-promoted conformational change of the peptidyl-transferase domain. Nucleic Acids Res.22, 4449–4453.10.1093/nar/22.21.4449Suche in Google Scholar PubMed PubMed Central

Verdier, L., Bertho, G., Gharbi-Benarous, J., and Girault, J. (2000). Lincomycin and clindamycin conformations. A fragment shared by macrolides, ketolides and lincosamides determined from TRNOE ribosome-bound conformations. Bioorg. Med. Chem.8, 1225–1243.Suche in Google Scholar

Wilson, D.N. (2004). Antibiotics and the inhibition of ribosome function. In: Protein Synthesis and Ribosome Structure, K.H. Nierhaus and D.N. Wilson, eds. (Weinheim, Germany: Wiley-VCH), pp. 449–527.10.1002/3527603433.ch12Suche in Google Scholar

Wilson, D.N., Schlünzen, F., Harms, J.M., Yoshida, T., Ohkubo, T., Albrecht, R., Buerger, J., Kobayashi, Y., and Fucini, P. (2005). X-Ray crystallography study on ribosome recycling: the mechanism of binding and action of RRF on the 50S ribosomal subunit. EMBO J.24, 251–260.10.1038/sj.emboj.7600525Suche in Google Scholar PubMed PubMed Central

Wimberly, B.T., Brodersen, D.E., Clemons, W.M., Morgan-Warren, R.J., Carter, A.P., Vonrhein, C., Hartsch, T., and Ramakrishnan, V. (2000). Structure of the 30S ribosomal subunit. Nature407, 327–339.10.1038/35030006Suche in Google Scholar PubMed

Wittmann, H.G., Stoffler, G., Apirion, D., Rosen, L., Tanaka, K., Tamaki, M., Takata, R., Dekio, S., and Otaka, E. (1973). Biochemical and genetic studies on two different types of erythromycin resistant mutants of Escherichia coli with altered ribosomal proteins. Mol. Gen. Genet.127, 175–189.10.1007/BF00333665Suche in Google Scholar PubMed

Xiong, L., Shah, S., Mauvais, P., and Mankin, A.S. (1999). A ketolide resistance mutation in domain II of 23S rRNA reveals the proximity of hairpin 35 to the peptidyl transferase centre. Mol. Microbiol.31, 633–639.10.1046/j.1365-2958.1999.01203.xSuche in Google Scholar

Youngman, E.M., Brunelle, J.L., Kochaniak, A.B., and Green, R. (2004). The active site of the ribosome is composed of two layers of conserved nucleotides with distinct roles in peptide bond formation and peptide release. Cell117, 589–599.10.1016/S0092-8674(04)00411-8Suche in Google Scholar

Published Online: 2005-12-09
Published in Print: 2005-12-01

©2005 by Walter de Gruyter Berlin New York

Heruntergeladen am 2.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/BC.2005.141/html?lang=de
Button zum nach oben scrollen