Startseite microRNA-guided posttranscriptional gene regulation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

microRNA-guided posttranscriptional gene regulation

  • Po Yu Chen und Gunter Meister
Veröffentlicht/Copyright: 9. Dezember 2005
Biological Chemistry
Aus der Zeitschrift Band 386 Heft 12

Abstract

microRNAs (miRNAs) form an evolutionarily conserved and highly abundant class of non-coding RNAs that are 21–24 nucleotides (nt) in length. They are processed from double-stranded (ds) RNA precursors and sequence-specifically guide posttranscriptional gene silencing. The processing steps are facilitated by members of the RNAse III enzyme family, whereas gene silencing events are mediated by members of the highly conserved Argonaute (Ago) protein family. Initially discovered in Caenorhabditis elegans, in which they are essential for proper developmental timing, hundreds of miRNAs have been discovered to date in a variety of different organisms, including plants, flies and mammals. Expression profiling approaches demonstrated that miRNAs are specifically expressed not only during embryonic development, but also during cell differentiation and other cellular events such as hormonal signaling. Although miRNAs have been the object of extensive research in recent years, very little is known about their target mRNAs. Their identification along with a comprehensive description of the miRNA/target-mRNA interaction network will add a new level to our knowledge of gene regulation and will also provide new insights into the biology of so far poorly understood diseases, including various forms of cancer.

:

Corresponding author

References

Abrahante, J.E., Daul, A.L., Li, M., Volk, M.L., Tennessen, J.M., Miller, E.A., and Rougvie, A.E. (2003). The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs. Dev. Cell4, 625–637.10.1016/S1534-5807(03)00127-8Suche in Google Scholar

Allen, E., Xie, Z., Gustafson, A.M., Sung, G.H., Spatafora, J.W., and Carrington, J.C. (2004). Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat. Genet.36, 1282–1290.10.1038/ng1478Suche in Google Scholar

Allen, E., Xie, Z., Gustafson, A.M., and Carrington, J.C. (2005). microRNA-directed phasing during transacting siRNA biogenesis in plants. Cell121, 207–221.10.1016/j.cell.2005.04.004Suche in Google Scholar

Ambros, V. (2004). The functions of animal microRNAs. Nature431, 350–355.10.1038/nature02871Suche in Google Scholar

Ambros, V., Lee, R.C., Lavanway, A., Williams, P.T., and Jewell, D. (2003). MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr. Biol.13, 807–818.10.1016/S0960-9822(03)00287-2Suche in Google Scholar

Aravin, A.A., Lagos-Quintana, M., Yalcin, A., Zavolan, M., Marks, D., Snyder, B., Gaasterland, T., Meyer, J., and Tuschl, T. (2003). The small RNA profile during Drosophila melanogaster development. Dev. Cell5, 337–350.10.1016/S1534-5807(03)00228-4Suche in Google Scholar

Axtell, M.J. and Bartel, D.P. (2005). Antiquity of microRNAs and their targets in land plants. Plant Cell17, 1658–1673.10.1105/tpc.105.032185Suche in Google Scholar

Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116, 281–297.10.1016/S0092-8674(04)00045-5Suche in Google Scholar

Baskerville, S. and Bartel, D.P. (2005). Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA11, 241–247.10.1261/rna.7240905Suche in Google Scholar PubMed PubMed Central

Basyuk, E., Suavet, F., Doglio, A., Bordonne, R., and Bertrand, E. (2003). Human let-7 stem-loop precursors harbor features of RNase III cleavage products. Nucleic Acids Res.31, 6593–6597.10.1093/nar/gkg855Suche in Google Scholar PubMed PubMed Central

Baulcombe, D. (2004). RNA silencing in plants. Nature431, 356–363.10.1038/nature02874Suche in Google Scholar

Bentwich, I., Avniel, A., Karov, Y., Aharonov, R., Gilad, S., Barad, O., Barzilai, A., Einat, P., Einav, U., Meiri, E., et al. (2005). Identification of hundreds of conserved and nonconserved human microRNAs. Nat. Genet.37, 766–770.10.1038/ng1590Suche in Google Scholar

Berezikov, E., Guryev, V., van de Belt, J., Wienholds, E., Plasterk, R.H., and Cuppen, E. (2005). Phylogenetic shadowing and computational identification of human microRNA genes. Cell120, 21–24.10.1016/j.cell.2004.12.031Suche in Google Scholar

Bernstein, E., Caudy, A.A., Hammond, S.M., and Hannon, G.J. (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature409, 363–366.10.1038/35053110Suche in Google Scholar

Bernstein, E., Kim, S.Y., Carmell, M.A., Murchison, E.P., Alcorn, H., Li, M.Z., Mills, A.A., Elledge, S.J., Anderson, K.V., and Hannon, G.J. (2003). Dicer is essential for mouse development. Nat. Genet.35, 215–217.10.1038/ng1253Suche in Google Scholar

Bohnsack, M.T., Czaplinski, K., and Gorlich, D. (2004). Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA10, 185–191.10.1261/rna.5167604Suche in Google Scholar

Bonnet, E., Wuyts, J., Rouze, P., and Van de Peer, Y. (2004). Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc. Natl. Acad. Sci. USA101, 11511–11516.10.1073/pnas.0404025101Suche in Google Scholar

Boutet, S., Vazquez, F., Liu, J., Béclin, C., Fagard, M., Gratias, A., Morel, J.B., Crete, P., Chen, X., and Vaucheret, H. (2003). Arabidopsis HEN1. A genetic link between endogenous miRNA controlling development and siRNA controlling transgene silencing and virus resistance. Curr. Biol.13, 843–848.10.1016/S0960-9822(03)00293-8Suche in Google Scholar

Brennecke, J. and Cohen, S.M. (2003). Towards a complete description of the microRNA complement of animal genomes. Genome Biol.4, 228.10.1186/gb-2003-4-9-228Suche in Google Scholar

Brennecke, J., Hipfner, D.R., Stark, A., Russell, R.B., and Cohen, S.M. (2003). bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell113, 25–36.10.1016/S0092-8674(03)00231-9Suche in Google Scholar

Brennecke, J., Stark, A., Russell, R.B., and Cohen, S.M. (2005). Principles of microRNA-target recognition. PLoS Biol.3, e85.10.1371/journal.pbio.0030085Suche in Google Scholar PubMed PubMed Central

Cai, X., Hagedorn, C.H., and Cullen, B.R. (2004). Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA10, 1957–1966.10.1261/rna.7135204Suche in Google Scholar PubMed PubMed Central

Cai, X., Lu, S., Zhang, Z., Gonzalez, C.M., Damania, B., and Cullen, B.R. (2005). Kaposi's sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc. Natl. Acad. Sci. USA102, 5570–5575.10.1073/pnas.0408192102Suche in Google Scholar PubMed PubMed Central

Calin, G.A., Dumitru, C.D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., Aldler, H., Rattan, S., Keating, M., Rai, K., et al. (2002). Frequent deletions and down-regulation of microRNA genes miR-15 and miR-16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA99, 15524–15529.10.1073/pnas.242606799Suche in Google Scholar PubMed PubMed Central

Calin, G.A., Liu, C.G., Sevignani, C., Ferracin, M., Felli, N., Dumitru, C.D., Shimizu, M., Cimmino, A., Zupo, S., Dono, M., et al. (2004a). MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc. Natl. Acad. Sci. USA101, 11755–11760.10.1073/pnas.0404432101Suche in Google Scholar PubMed PubMed Central

Calin, G.A., Sevignani, C., Dumitru, C.D., Hyslop, T., Noch, E., Yendamuri, S., Shimizu, M., Rattan, S., Bullrich, F., Negrini, M., and Croce, C.M. (2004b). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl. Acad. Sci. USA101, 2999–3004.10.1073/pnas.0307323101Suche in Google Scholar PubMed PubMed Central

Carmell, M.A., Xuan, Z., Zhang, M.Q., and Hannon, G.J. (2002). The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev.16, 2733–2742.10.1101/gad.1026102Suche in Google Scholar PubMed

Chang, S., Johnston, R.J. Jr., Frokjaer-Jensen, C., Lockery, S., and Hobert, O. (2004). MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode. Nature430, 785–789.10.1038/nature02752Suche in Google Scholar PubMed

Chen, P.Y., Manninga, H., Slanchev, K., Chien, M., Russo, J.J., Ju, J., Sheridan, R., John, B., Marks, D.S., Gaidatzis, D., et al. (2005). The developmental miRNA profiles of zebrafish as determined by small RNA cloning. Genes Dev.19, 1288–1293.10.1101/gad.1310605Suche in Google Scholar PubMed PubMed Central

Chen, X. (2003). A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science303, 2022–2025.Suche in Google Scholar

Chendrimada, T.P., Gregory, R.I., Kumaraswamy, E., Norman, J., Cooch, N., Nishikura, K., and Shiekhattar, R. (2005). TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature436, 740–744.10.1038/nature03868Suche in Google Scholar PubMed PubMed Central

Cook, H.A., Koppetsch, B.S., Wu, J., and Theurkauf, W.E. (2004). The Drosophila SDE3 homolog armitage is required for oskar mRNA silencing and embryonic axis specification. Cell116, 817–829.10.1016/S0092-8674(04)00250-8Suche in Google Scholar

Denli, A.M., Tops, B.B., Plasterk, R.H., Ketting, R.F., and Hannon, G.J. (2004). Processing of primary microRNAs by the Microprocessor complex. Nature432, 231–235.10.1038/nature03049Suche in Google Scholar PubMed

Doench, J.G., Petersen, C.P., and Sharp, P.A. (2003). siRNAs can function as miRNAs. Genes Dev.17, 438–442.10.1101/gad.1064703Suche in Google Scholar PubMed PubMed Central

Dostie, J., Mourelatos, Z., Yang, M., Sharma, A., and Dreyfuss, G. (2003). Numerous microRNPs in neuronal cells containing novel microRNAs. RNA9, 180–186.10.1261/rna.2141503Suche in Google Scholar PubMed PubMed Central

Eis, P.S., Tam, W., Sun, L., Chadburn, A., Li, Z., Gomez, M.F., Lund, E., and Dahlberg, J.E. (2005). Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc. Natl. Acad. Sci. USA102, 3627–3632.10.1073/pnas.0500613102Suche in Google Scholar PubMed PubMed Central

Emery, J.F., Floyd, S.K., Alvarez, J., Eshed, Y., Hawker, N.P., Izhaki, A., Baum, S.F., and Bowman, J.L. (2003). Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr. Biol.13, 1768–1774.10.1016/j.cub.2003.09.035Suche in Google Scholar PubMed

Enright, A.J., John, B., Gaul, U., Tuschl, T., Sander, C., and Marks, D. (2003). MicroRNA targets in Drosophila. Genome Biol.5, 1–14.Suche in Google Scholar

Floyd, S.K. and Bowman, J.L. (2004). Gene regulation: ancient microRNA target sequences in plants. Nature428, 485–486.10.1038/428485aSuche in Google Scholar PubMed

Forstemann, K., Tomari, Y., Du, T., Vagin, V.V., Denli, A.M., Bratu, D.P., Klattenhoff, C., Theurkauf, W.E., and Zamore, P.D. (2005). Normal microRNA maturation and germ-line stem cell maintenance requires loquacious, a double-stranded RNA-binding domain protein. PLoS Biol.3, e236.10.1371/journal.pbio.0030236Suche in Google Scholar PubMed PubMed Central

Giraldez, A.J., Cinalli, R.M., Glasner, M.E., Enright, A.J., Thomson, J.M., Baskerville, S., Hammond, S.M., Bartel, D.P., and Schier, A.F. (2005). MicroRNAs regulate brain morphogenesis in zebrafish. Science308, 833–838.10.1126/science.1109020Suche in Google Scholar PubMed

Grad, Y., Aach, J., Hayes, G.D., Reinhart, B.J., Church, G.M., Ruvkun, G., and Kim, J. (2003). Computational and experimental identification of C. elegans microRNAs. Mol. Cell11, 1253–1263.Suche in Google Scholar

Gregory, R.I., Yan, K.P., Amuthan, G., Chendrimada, T., Doratotaj, B., Cooch, N., and Shiekhattar, R. (2004). The Microprocessor complex mediates the genesis of microRNAs. Nature432, 235–240.10.1038/nature03120Suche in Google Scholar PubMed

Grishok, A., Pasquinelli, A.E., Conte, D., Li, N., Parrish, S., Ha, I., Baillie, D.L., Fire, A., Ruvkun, G., and Mello, C.C. (2001). Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell106, 23–34.Suche in Google Scholar

Grosshans, H., Johnson, T., Reinert, K.L., Gerstein, M., and Slack, F.J. (2005). The temporal patterning microRNA let-7 regulates several transcription factors at the larval to adult transition in C. elegans. Dev. Cell8, 321–330.10.1016/j.devcel.2004.12.019Suche in Google Scholar

Haley, B. and Zamore, P.D. (2004). Kinetic analysis of the RNAi enzyme complex. Nat. Struct. Mol. Biol.11, 599–606.10.1038/nsmb780Suche in Google Scholar

Han, J., Lee, Y., Yeom, K.H., Kim, Y.K., Jin, H., and Kim, V.N. (2004a). The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev.18, 3016–3027.10.1101/gad.1262504Suche in Google Scholar

Han, M.H., Goud, S., Song, L., and Fedoroff, N. (2004b). The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation. Proc. Natl. Acad. Sci. USA101, 1093–1098.10.1073/pnas.0307969100Suche in Google Scholar

Hatfield, S.D., Shcherbata, H.R., Fischer, K.A., Nakahara, K., Carthew, R.W., and Ruohola-Baker, H. (2005). Stem cell division is regulated by the microRNA pathway. Nature435, 974–978.10.1038/nature03816Suche in Google Scholar

He, L., Thomson, J.M., Hemann, M.T., Hernando-Monge, E., Mu, D., Goodson, S., Powers, S., Cordon-Cardo, C., Lowe, S.W., Hannon, G.J., and Hammond, S.M. (2005). A microRNA polycistron as a potential human oncogene. Nature435, 828–833.10.1038/nature03552Suche in Google Scholar

Hiraguri, A., Itoh, R., Kondo, N., Nomura, Y., Aizawa, D., Murai, Y., Koiwa, H., Seki, M., Shinozaki, K., and Fukuhara, T. (2005). Specific interactions between Dicer-like proteins and HYL1/DRB-family dsRNA-binding proteins in Arabidopsis thaliana. Plant Mol. Biol.57, 173–188.10.1007/s11103-004-6853-5Suche in Google Scholar

Houbaviy, H.B., Murray, M.F., and Sharp, P.A. (2003). Embryonic stem cell-specific MicroRNAs. Dev. Cell5, 351–358.10.1016/S1534-5807(03)00227-2Suche in Google Scholar

Hutvágner, G., McLachlan, J., Bálint, É., Tuschl, T., and Zamore, P.D. (2001). A cellular function for the RNA interference enzyme Dicer in small temporal RNA maturation. Science293, 834–838.10.1126/science.1062961Suche in Google Scholar PubMed

Hutvágner, G. and Zamore, P.D. (2002). A microRNA in a multiple-turnover RNAi enzyme complex. Science297, 2056–2060.10.1126/science.1073827Suche in Google Scholar PubMed

Ishizuka, A., Siomi, M.C., and Siomi, H. (2002). A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev.16, 2497–2508.10.1101/gad.1022002Suche in Google Scholar

Jiang, F., Ye, X., Liu, X., Fincher, L., McKearin, D., and Liu, Q. (2005). Dicer-1 and R3D1-L catalyze microRNA maturation in Drosophila. Genes Dev.19, 1674–1679.10.1101/gad.1334005Suche in Google Scholar

Jing, Q., Huang, S., Guth, S., Zarubin, T., Motoyama, A., Chen, J., Di Padova, F., Lin, S.C., Gram, H., and Han, J. (2005). Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell120, 623–634.10.1016/j.cell.2004.12.038Suche in Google Scholar

John, B., Enright, A.J., Aravin, A., Tuschl, T., Sander, C., and Marks, D.S. (2004). Human MicroRNA targets. PLoS Biol.2, e363.10.1371/journal.pbio.0020363Suche in Google Scholar

Johnson, S.M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., Labourier, E., Reinert, K.L., Brown, D., and Slack, F.J. (2005). RAS is regulated by the let-7 microRNA family. Cell120, 635–647.10.1016/j.cell.2005.01.014Suche in Google Scholar

Johnston, R.J. and Hobert, O. (2003). A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature426, 845–849.10.1038/nature02255Suche in Google Scholar

Jones-Rhoades, M.W. and Bartel, D.P. (2004). Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol. Cell14, 787–799.10.1016/j.molcel.2004.05.027Suche in Google Scholar

Juarez, M.T., Kui, J.S., Thomas, J., Heller, B.A., and Timmermans, M.C. (2004). microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature428, 84–88.10.1038/nature02363Suche in Google Scholar

Khvorova, A., Reynolds, A., and Jayasena, S.D. (2003). Functional siRNAs and miRNAs exhibit strand bias. Cell115, 209–216.10.1016/S0092-8674(03)00801-8Suche in Google Scholar

Kidner, C.A. and Martienssen, R.A. (2004). Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. Nature428, 81–84.10.1038/nature02366Suche in Google Scholar PubMed

Kim, J., Krichevsky, A., Grad, Y., Hayes, G.D., Kosik, K.S., Church, G.M., and Ruvkun, G. (2004). Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proc. Natl. Acad. Sci. USA101, 360–365.10.1073/pnas.2333854100Suche in Google Scholar

Kloosterman, W.P., Wienholds, E., Ketting, R.F., and Plasterk, R.H. (2004). Substrate requirements for let-7 function in the developing zebrafish embryo. Nucleic Acids Res.32, 6284–6291.10.1093/nar/gkh968Suche in Google Scholar

Krek, A., Grun, D., Poy, M.N., Wolf, R., Rosenberg, L., Epstein, E.J., MacMenamin, P., da Piedade, I., Gunsalus, K.C., Stoffel, M., and Rajewsky, N. (2005). Combinatorial microRNA target predictions. Nat. Genet.37, 495–500.10.1038/ng1536Suche in Google Scholar

Krichevsky, A.M., King, K.S., Donahue, C.P., Khrapko, K., and Kosik, K.S. (2003). A microRNA array reveals extensive regulation of microRNAs during brain development. RNA9, 1274–1281.10.1261/rna.5980303Suche in Google Scholar

Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W., and Tuschl, T. (2002). Identification of tissue-specific microRNAs from mouse. Curr. Biol.12, 735–739.10.1016/S0960-9822(02)00809-6Suche in Google Scholar

Lagos-Quintana, M., Rauhut, R., Meyer, J., Borkhardt, A., and Tuschl, T. (2003). New microRNAs from mouse and human. RNA9, 175–179.10.1261/rna.2146903Suche in Google Scholar PubMed PubMed Central

Lai, E.C., Tomancak, P., Williams, R.W., and Rubin, G.M. (2003). Computational identification of Drosophila microRNA genes. Genome Biol.4, R42.10.1186/gb-2003-4-7-r42Suche in Google Scholar PubMed PubMed Central

Landthaler, M., Yalcin, A., and Tuschl, T. (2004). The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis. Curr. Biol.14, 2162–2167.Suche in Google Scholar

Laufs, P., Peaucelle, A., Morin, H., and Traas, J. (2004). MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development131, 4311–4322.10.1242/dev.01320Suche in Google Scholar PubMed

Leaman, D., Chen, P.Y., Fak, J., Yalcin, A., Pearce, M., Unnerstall, U., Marks, D.S., Sander, C., Tuschl, T., and Gaul, U. (2005). Antisense-mediated depletion reveals essential and specific functions of microRNAs in Drosophila development. Cell121, 1097–1108.10.1016/j.cell.2005.04.016Suche in Google Scholar PubMed

Lecellier, C.H., Dunoyer, P., Arar, K., Lehmann-Che, J., Eyquem, S., Himber, C., Saib, A., and Voinnet, O. (2005). A cellular microRNA mediates antiviral defense in human cells. Science308, 557–560.10.1126/science.1108784Suche in Google Scholar PubMed

Lee, R.C., Feinbaum, R.L., and Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell75, 843–854.Suche in Google Scholar

Lee, Y., Jeon, K., Lee, J.T., Kim, S., and Kim, V.N. (2002). MicroRNA maturation: stepwise processing and subcellular localization. EMBO J.21, 4663–4670.10.1093/emboj/cdf476Suche in Google Scholar

Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim, S., and Kim, V.N. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature425, 415–419.10.1038/nature01957Suche in Google Scholar

Lee, Y., Kim, M., Han, J., Yeom, K.H., Lee, S., Baek, S.H., and Kim, V.N. (2004a). MicroRNA genes are transcribed by RNA polymerase II. EMBO J.23, 4051–4060.10.1038/sj.emboj.7600385Suche in Google Scholar

Lee, Y.S., Nakahara, K., Pham, J.W., Kim, K., He, Z., Sontheimer, E.J., and Carthew, R.W. (2004b). Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell117, 69–81.10.1016/S0092-8674(04)00261-2Suche in Google Scholar

Lewis, B.P., Shih, I., Jones-Rhoades, M.W., Bartel, D.P., and Burge, C.B. (2003). Prediction of mammalian microRNA targets. Cell115, 787–798.10.1016/S0092-8674(03)01018-3Suche in Google Scholar

Lewis, B.P., Burge, C.B., and Bartel, D.P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell120, 15–20.10.1016/j.cell.2004.12.035Suche in Google Scholar

Li, W.X. and Ding, S.W. (2001). Viral suppressors of RNA silencing. Curr. Opin. Biotechnol.12, 150–154.10.1016/S0958-1669(00)00190-7Suche in Google Scholar

Lim, L.P., Glasner, M.E., Yekta, S., Burge, C.B., and Bartel, D.P. (2003a). Vertebrate microRNA genes. Science299, 1540.10.1126/science.1080372Suche in Google Scholar PubMed

Lim, L.P., Lau, N.C., Weinstein, E.G., Abdelhakim, A., Yekta, S., Rhoades, M.W., Burge, C.B., and Bartel, D.P. (2003b). The microRNAs of Caenorhabditis elegans. Genes Dev.17, 991–1008.10.1101/gad.1074403Suche in Google Scholar PubMed PubMed Central

Lim, L.P., Lau, N.C., Garrett-Engele, P., Grimson, A., Schelter, J.M., Castle, J., Bartel, D.P., Linsley, P.S., and Johnson, J.M. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature433, 769–773.10.1038/nature03315Suche in Google Scholar PubMed

Lin, S.Y., Johnson, S.M., Abraham, M., Vella, M.C., Pasquinelli, A., Gamberi, C., Gottlieb, E., and Slack, F.J. (2003). The C. elegans hunchback homolog, hbl-1, controls temporal patterning and is a probable microRNA target. Dev. Cell4, 639–650.Suche in Google Scholar

Lingel, A., Simon, B., Izaurralde, E., and Sattler, M. (2004). Nucleic acid 3′-end recognition by the Argonaute2 PAZ domain. Nat. Struct. Mol. Biol.11, 576–577.10.1038/nsmb777Suche in Google Scholar PubMed

Liu, J., Carmell, M.A., Rivas, F.V., Marsden, C.G., Thomson, J.M., Song, J.J., Hammond, S.M., Joshua-Tor, L., and Hannon, G.J. (2004). Argonaute2 is the catalytic engine of mammalian RNAi. Science305, 1437–1441.10.1126/science.1102513Suche in Google Scholar PubMed

Liu, Q., Rand, T.A., Kalidas, S., Du, F., Kim, H.E., Smith, D.P., and Wang, X. (2003). R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science301, 1921–1925.10.1126/science.1088710Suche in Google Scholar PubMed

Llave, C., Xie, Z., Kasschau, K.D., and Carrington, J.C. (2002). Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science297, 2053–2056.10.1126/science.1076311Suche in Google Scholar PubMed

Lu, J., Getz, G., Miska, E.A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Ebert, B.L., Mak, R.H., Ferrando, A.A., et al. (2005). MicroRNA expression profiles classify human cancers. Nature435, 834–838.10.1038/nature03702Suche in Google Scholar PubMed

Lund, E., Guttinger, S., Calado, A., Dahlberg, J.E., and Kutay, U. (2004). Nuclear export of microRNA precursors. Science303, 95–98.10.1126/science.1090599Suche in Google Scholar PubMed

Ma, J.B., Ye, K., and Patel, D.J. (2004). Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature429, 318–322.10.1038/nature02519Suche in Google Scholar PubMed PubMed Central

Ma, J.B., Yuan, Y.R., Meister, G., Pei, Y., Tuschl, T., and Patel, D.J. (2005). Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature434, 666–670.Suche in Google Scholar

Mallory, A.C., Dugas, D.V., Bartel, D.P., and Bartel, B. (2004a). MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr. Biol.14, 1035–1046.10.1016/j.cub.2004.06.022Suche in Google Scholar PubMed

Mallory, A.C., Reinhart, B.J., Jones-Rhoades, M.W., Tang, G., Zamore, P.D., Barton, M.K., and Bartel, D.P. (2004b). MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region. EMBO J.23, 3356–3364.10.1038/sj.emboj.7600340Suche in Google Scholar PubMed PubMed Central

Mallory, A.C., Bartel, D.P., and Bartel, B. (2005). MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell17, 1360–1375.10.1105/tpc.105.031716Suche in Google Scholar PubMed PubMed Central

Mansfield, J.H., Harfe, B.D., Nissen, R., Obenauer, J., Srineel, J., Chaudhuri, A., Farzan-Kashani, R., Zuker, M., Pasquinelli, A.E., Ruvkun, G. et al. (2004). MicroRNA-responsive ‘sensor’ transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression. Nat. Genet.36, 1079–1083.10.1038/ng1421Suche in Google Scholar

Meister, G., Landthaler, M., Dorsett, Y., and Tuschl, T. (2004a). Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA10, 544–550.10.1261/rna.5235104Suche in Google Scholar

Meister, G., Landthaler, M., Patkaniowska, A., Dorsett, Y., Teng, G., and Tuschl, T. (2004b). Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell15, 185–197.10.1016/j.molcel.2004.07.007Suche in Google Scholar

Metzler, M., Wilda, M., Busch, K., Viehmann, S., and Borkhardt, A. (2004). High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer39, 167–169.10.1002/gcc.10316Suche in Google Scholar

Michael, M.Z., O'Connor, S.M., van Holst Pellekaan, N.G., Young, G.P., and James, R.J. (2003). Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol. Cancer Res.1, 882–891.Suche in Google Scholar

Miska, E.A., Alvarez-Saavedra, E., Townsend, M., Yoshii, A., Sestan, N., Rakic, P., Constantine-Paton, M., and Horvitz, H.R. (2004). Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol.5, R68.10.1186/gb-2004-5-9-r68Suche in Google Scholar

Mourelatos, Z., Dostie, J., Paushkin, S., Sharma, A., Charroux, B., Abel, L., Rappsilber, J., Mann, M., and Dreyfuss, G. (2002). miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev.16, 720–728.10.1101/gad.974702Suche in Google Scholar

Nelson, P.T., Hatzigeorgiou, A.G., and Mourelatos, Z. (2004). miRNP:mRNA association in polyribosomes in a human neuronal cell line. RNA10, 387–394.10.1261/rna.5181104Suche in Google Scholar

Nykänen, A., Haley, B., and Zamore, P.D. (2001). ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell107, 309–321.10.1016/S0092-8674(01)00547-5Suche in Google Scholar

O'Donnell, K.A., Wentzel, E.A., Zeller, K.I., Dang, C.V., and Mendell, J.T. (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature435, 839–843.10.1038/nature03677Suche in Google Scholar PubMed

Okamura, K., Ishizuka, A., Siomi, H., and Siomi, M.C. (2004). Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev.18, 1655–1666.10.1101/gad.1210204Suche in Google Scholar PubMed PubMed Central

Olsen, P.H. and Ambros, V. (1999). The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol.216, 671–680.10.1006/dbio.1999.9523Suche in Google Scholar

Omoto, S. and Fujii, Y.R. (2005). Regulation of human immunodeficiency virus 1 transcription by nef microRNA. J. Gen. Virol.86, 751–755.10.1099/vir.0.80449-0Suche in Google Scholar

Omoto, S., Ito, M., Tsutsumi, Y., Ichikawa, Y., Okuyama, H., Brisibe, E.A., Saksena, N.K., and Fujii, Y.R. (2004). HIV-1 nef suppression by virally encoded microRNA. Retrovirology1, 44.10.1186/1742-4690-1-44Suche in Google Scholar

Palatnik, J.F., Allen, E., Wu, X., Schommer, C., Schwab, R., Carrington, J.C., and Weigel, D. (2003). Control of leaf morphogenesis by microRNAs. Nature425, 257–263.10.1038/nature01958Suche in Google Scholar

Park, W., Li, J., Song, R., Messing, J., and Chen, X. (2002). CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr. Biol.12, 1484–1495.10.1016/S0960-9822(02)01017-5Suche in Google Scholar

Parker, J.S., Roe, S.M., and Barford, D. (2004). Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity. EMBO J.23, 4727–4737.10.1038/sj.emboj.7600488Suche in Google Scholar

Parker, J.S., Roe, S.M., and Barford, D. (2005). Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex. Nature434, 663–666.10.1038/nature03462Suche in Google Scholar

Pfeffer, S., Zavolan, M., Grasser, F.A., Chien, M., Russo, J.J., Ju, J., John, B., Enright, A.J., Marks, D., Sander, C., and Tuschl, T. (2004). Identification of virus-encoded microRNAs. Science304, 734–736.10.1126/science.1096781Suche in Google Scholar

Pfeffer, S., Sewer, A., Lagos-Quintana, M., Sheridan, R., Sander, C., Grasser, F.A., van Dyk, L.F., Ho, C.K., Shuman, S., Chien, M., et al. (2005). Identification of microRNAs of the herpesvirus family. Nat. Methods2, 269–276.10.1038/nmeth746Suche in Google Scholar

Pham, J.W., Pellino, J.L., Lee, Y.S., Carthew, R.W., and Sontheimer, E.J. (2004). A Dicer-2-dependent 80s complex cleaves targeted mRNAs during RNAi in Drosophila. Cell117, 83–94.10.1016/S0092-8674(04)00258-2Suche in Google Scholar

Pillai, R.S., Bhattacharyya, S.N., Artus, C.G., Zoller, T., Cougot, N., Basyuk, E., Bertrand, E., and Filipowicz, W. (2005). Inhibition of translational initiation by let-7 MicroRNA in human cells. Science309, 1573–1576.10.1126/science.1115079Suche in Google Scholar

Poy, M.N., Eliasson, L., Krutzfeldt, J., Kuwajima, S., Ma, X., Macdonald, P.E., Pfeffer, S., Tuschl, T., Rajewsky, N., Rorsman, P., and Stoffel, M. (2004). A pancreatic islet-specific microRNA regulates insulin secretion. Nature432, 226–230.10.1038/nature03076Suche in Google Scholar

Rajewsky, N. and Socci, N.D. (2004). Computational identification of microRNA targets. Dev. Biol.267, 529–535.10.1016/j.ydbio.2003.12.003Suche in Google Scholar

Reinhart, B.J., Weinstein, E.G., Rhoades, M.W., Bartel, B., and Bartel, D.P. (2002). MicroRNAs in plants. Genes Dev.16, 1616–1626.10.1101/gad.1004402Suche in Google Scholar

Rhoades, M., Reinhart, B., Lim, L., Burge, C., Bartel, B., and Bartel, D. (2002). Prediction of plant microRNA targets. Cell110, 513.10.1016/S0092-8674(02)00863-2Suche in Google Scholar

Rivas, F.V., Tolia, N.H., Song, J.J., Aragon, J.P., Liu, J., Hannon, G.J., and Joshua-Tor, L. (2005). Purified Argonaute2 and an siRNA form recombinant human RISC. Nat. Struct. Mol. Biol.12, 340–349.10.1038/nsmb918Suche in Google Scholar

Rodriguez, A., Griffiths-Jones, S., Ashurst, J.L., and Bradley, A. (2004). Identification of mammalian microRNA host genes and transcription units. Genome Res.14, 1902–1910.10.1101/gr.2722704Suche in Google Scholar

Saito, K., Ishizuka, A., Siomi, H., and Siomi, M.C. (2005). Processing of pre-microRNAs by the Dicer-1-Loquacious complex in Drosophila cells. PLoS Biol.3, e235.10.1371/journal.pbio.0030235Suche in Google Scholar

Saxena, S., Jonsson, Z.O., and Dutta, A. (2003). Small RNAs with imperfect match to endogenous mRNA repress translation: implications for off-target activity of siRNA in mammalian cells. J. Biol. Chem.278, 44312–44319.10.1074/jbc.M307089200Suche in Google Scholar

Schwarz, D.S., Hutvágner, G., Du, T., Xu, Z., Aronin, N., and Zamore, P.D. (2003). Asymmetry in the assembly of the RNAi enzyme complex. Cell115, 199–208.10.1016/S0092-8674(03)00759-1Suche in Google Scholar

Seggerson, K., Tang, L., and Moss, E.G. (2002). Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-28 after translation initiation. Dev. Biol.243, 215–225.10.1006/dbio.2001.0563Suche in Google Scholar

Sempere, L.F., Dubrovsky, E.B., Dubrovskaya, V.A., Berger, E.M., and Ambros, V. (2002). The expression of the let-7 small regulatory RNA is controlled by ecdysone during metamorphosis in Drosophila melanogaster. Dev. Biol.244, 170–179.10.1006/dbio.2002.0594Suche in Google Scholar

Sempere, L.F., Sokol, N.S., Dubrovsky, E.B., Berger, E.M., and Ambros, V. (2003). Temporal regulation of microRNA expression in Drosophila melanogaster mediated by hormonal signals and broad-complex gene activity. Dev. Biol.259, 9–18.10.1016/S0012-1606(03)00208-2Suche in Google Scholar

Sempere, L.F., Freemantle, S., Pitha-Rowe, I., Moss, E., Dmitrovsky, E., and Ambros, V. (2004). Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol.5, R13.10.1186/gb-2004-5-3-r13Suche in Google Scholar PubMed PubMed Central

Sijen, T. and Plasterk, R.H. (2003). Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature426, 310–314.10.1038/nature02107Suche in Google Scholar PubMed

Slack, F.J., Basson, M., Liu, Z., Ambros, V., Horvitz, H.R., and Ruvkun, G. (2000). The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol. Cell5, 659–669.Suche in Google Scholar

Smalheiser, N.R. (2003). EST analyses predict the existence of a population of chimeric microRNA precursor-mRNA transcripts expressed in normal human and mouse tissues. Genome Biol.4, 403.10.1186/gb-2003-4-7-403Suche in Google Scholar PubMed PubMed Central

Smalheiser, N.R. and Torvik, V.I. (2005). Mammalian microRNAs derived from genomic repeats. Trends Genet.21, 322–326.10.1016/j.tig.2005.04.008Suche in Google Scholar PubMed

Song, J.J., Liu, J., Tolia, N.H., Schneiderman, J., Smith, S.K., Martienssen, R.A., Hannon, G.J., and Joshua-Tor, L. (2003). The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat. Struct. Biol.10, 1026–1032.10.1038/nsb1016Suche in Google Scholar PubMed

Song, J.J., Smith, S.K., Hannon, G.J., and Joshua-Tor, L. (2004). Crystal structure of Argonaute and its implications for RISC slicer activity. Science305, 1434–1437.10.1126/science.1102514Suche in Google Scholar PubMed

Soutschek, J., Akinc, A., Bramlage, B., Charisse, K., Constien, R., Donoghue, M., Elbashir, S., Geick, A., Hadwiger, P., Harborth, J. et al. (2004). Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature432, 173–178.10.1038/nature03121Suche in Google Scholar PubMed

Stark, A., Brennecke, J., Russell, R.B., and Cohen, S.M. (2003). Identification of Drosophila microRNA targets. PLoS Biol.1, 397–409.10.1371/journal.pbio.0000060Suche in Google Scholar

Suh, M.R., Lee, Y., Kim, J.Y., Kim, S.K., Moon, S.H., Lee, J.Y., Cha, K.Y., Chung, H.M., Yoon, H.S., Moon, S.Y., et al. (2004). Human embryonic stem cells express a unique set of microRNAs. Dev. Biol.270, 488–498.10.1016/j.ydbio.2004.02.019Suche in Google Scholar

Sullivan, C.S., Grundhoff, A.T., Tevethia, S., Pipas, J.M., and Ganem, D. (2005). SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature435, 682–686.10.1038/nature03576Suche in Google Scholar

Sunkar, R. and Zhu, J.K. (2004). Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell16, 2001–2019.10.1105/tpc.104.022830Suche in Google Scholar

Sunkar, R., Girke, T., Jain, P.K., and Zhu, J.K. (2005). Cloning and characterization of microRNAs from rice. Plant Cell17, 1397–1411.10.1105/tpc.105.031682Suche in Google Scholar

Tomari, Y., Du, T., Haley, B., Schwarz, D.S., Bennett, R., Cook, H.A., Koppetsch, B.S., Theurkauf, W.E., and Zamore, P.D. (2004). RISC assembly defects in the Drosophila RNAi mutant armitage. Cell116, 831–841.10.1016/S0092-8674(04)00218-1Suche in Google Scholar

Vaucheret, H., Vazquez, F., Crete, P., and Bartel, D.P. (2004). The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev.18, 1187–1197.10.1101/gad.1201404Suche in Google Scholar

Vazquez, F., Gasciolli, V., Crete, P., and Vaucheret, H. (2004). The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Curr. Biol.14, 346–351.10.1016/j.cub.2004.01.035Suche in Google Scholar

Voinnet, O. (2001). RNA silencing as a plant immune system against viruses. Trends Genet.17, 449–459.10.1016/S0168-9525(01)02367-8Suche in Google Scholar

Voinnet, O. (2005). Induction and suppression of RNA silencing: insights from viral infections. Nat. Rev. Genet.6, 206–220.10.1038/nrg1555Suche in Google Scholar PubMed

Wang, J.F., Zhou, H., Chen, Y.Q., Luo, Q.J., and Qu, L.H. (2004a). Identification of 20 microRNAs from Oryza sativa. Nucleic Acids Res.32, 1688–1695.10.1093/nar/gkh332Suche in Google Scholar

Wang, X.J., Reyes, J.L., Chua, N.H., and Gaasterland, T. (2004b). Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol.5, R65.10.1186/gb-2004-5-9-r65Suche in Google Scholar

Watanabe, T., Takeda, A., Mise, K., Okuno, T., Suzuki, T., Minami, N., and Imai, H. (2005). Stage-specific expression of micro-RNAs during Xenopus development. FEBS Lett.579, 318–324.10.1016/j.febslet.2004.11.067Suche in Google Scholar

Wienholds, E., Kloosterman, W.P., Miska, E., Alvarez-Saavedra, E., Berezikov, E., de Bruijn, E., Horvitz, H.R., Kauppinen, S., and Plasterk, R.H. (2005). MicroRNA expression in zebrafish embryonic development. Science309, 310–311.10.1126/science.1114519Suche in Google Scholar

Wightman, B., Ha, I., and Ruvkun, G. (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell75, 855–862.10.1016/0092-8674(93)90530-4Suche in Google Scholar

Xie, Z., Kasschau, K.D., and Carrington, J.C. (2003). Negative feedback regulation of Dicer-Like1 in Arabidopsis by micro-RNA-guided mRNA degradation. Curr. Biol.13, 784–789.10.1016/S0960-9822(03)00281-1Suche in Google Scholar

Xie, Z., Johansen, L.K., Gustafson, A.M., Kasschau, K.D., Lellis, A.D., Zilberman, D., Jacobsen, S.E., and Carrington, J.C. (2004). Genetic and functional diversification of small RNA pathways in plants. PLoS Biol.2, E104.10.1371/journal.pbio.0020104Suche in Google Scholar

Xu, P., Vernooy, S.Y., Guo, M., and Hay, B.A. (2003). The Drosophila microRNA mir-14 suppresses cell death and is required for normal fat metabolism. Curr. Biol.13, 790–795.10.1016/S0960-9822(03)00250-1Suche in Google Scholar

Yan, K.S., Yan, S., Farooq, A., Han, A., Zeng, L., and Zhou, M.M. (2003). Structure and conserved RNA binding of the PAZ domain. Nature426, 468–474.10.1038/nature02129Suche in Google Scholar PubMed

Yekta, S., Shih, I.H., and Bartel, D.P. (2004). MicroRNA-directed cleavage of HOXB8 mRNA. Science304, 594–596.10.1126/science.1097434Suche in Google Scholar PubMed

Yi, R., Qin, Y., Macara, I.G., and Cullen, B.R. (2003). Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev.17, 3011–3016.10.1101/gad.1158803Suche in Google Scholar PubMed PubMed Central

Yu, B., Yang, Z., Li, J., Minakhina, S., Yang, M., Padgett, R.W., Steward, R., and Chen, X. (2005). Methylation as a crucial step in plant microRNA biogenesis. Science307, 932–935.10.1126/science.1107130Suche in Google Scholar PubMed PubMed Central

Yuan, Y.R., Pei, Y., Ma, J.B., Kuryavyi, V., Zhadina, M., Meister, G., Chen, H.Y., Dauter, Z., Tuschl, T., and Patel, D.J. (2005). Crystal structure of A. aeolicus Argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage. Mol. Cell19, 405–419.Suche in Google Scholar

Zeng, Y. and Cullen, B.R. (2004). Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Res.32, 4776–4785.10.1093/nar/gkh824Suche in Google Scholar PubMed PubMed Central

Zeng, Y. and Cullen, B.R. (2005). Efficient processing of primary microRNA hairpins by Drosha requires flanking non-structured RNA sequences. J. Biol. Chem.280, 27595–27603.10.1074/jbc.M504714200Suche in Google Scholar PubMed

Zeng, Y., Yi, R., and Cullen, B.R. (2003). MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc. Natl. Acad. Sci. USA100, 9779–9784.10.1073/pnas.1630797100Suche in Google Scholar PubMed PubMed Central

Zhang, H., Kolb, F.A., Brondani, V., Billy, E., and Filipowicz, W. (2002). Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J.21, 5875–5885.10.1093/emboj/cdf582Suche in Google Scholar PubMed PubMed Central

Zhang, H., Kolb, F.A., Jaskiewicz, L., Westhof, E., and Filipowicz, W. (2004). Single processing center models for human Dicer and bacterial RNase III. Cell118, 57–68.10.1016/j.cell.2004.06.017Suche in Google Scholar PubMed

Zhao, Y., Samal, E., and Srivastava, D. (2005). Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature436, 214–220.10.1038/nature03817Suche in Google Scholar PubMed

Zhong, R. and Ye, Z.H. (2004). Amphivasal vascular bundle 1, a gain-of-function mutation of the IFL1/REV gene, is associated with alterations in the polarity of leaves, stems and carpels. Plant Cell. Physiol.45, 369–385.10.1093/pcp/pch051Suche in Google Scholar PubMed

Published Online: 2005-12-09
Published in Print: 2005-12-01

©2005 by Walter de Gruyter Berlin New York

Heruntergeladen am 13.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/BC.2005.139/html
Button zum nach oben scrollen