13 Biolubricants and its application in engineering
-
Atanu Kumar Paul
and Sutapa Das
Abstract
Lubricants, commonly utilized in machinery to minimize friction, typically stem from petrochemical or mineral origins. Concerns over the environmental impact of mineral-based lubricants have spurred exploration into biodegradable alternatives. Vegetable oils present promising biodegradability and rheological traits at elevated temperatures, albeit exhibiting deficiencies in cold flow properties. The environmental ramifications of conventional lubricants, coupled with oil source depletion, have fueled demand for renewable and biodegradable lubricants. Biolubricants offer several benefits over mineral oil lubricants, including superior biodegradability, minimal toxicity, excellent lubricating capabilities, and limited adverse effects on both the environment and human health. Compressors are devices that raise a gas’s pressure by using mechanical force. Vacuum pumps are compressors that produce vacuum by operating under suction pressure. In these applications, lubricants serve as a liquid seal, lubricate moving components, such as bearings and gears, and dissipate heat. Given that the lubricant frequently operates in an unfriendly environment, this can be a challenging operation. Almost any sort of machine should use a synthetic lubricant for a variety of reasons. Each synthetic form may have unique benefits, but none is superior in every way. In the past, mineral oils were used to lubricate the compressors in refrigeration systems. They operate poorly with numerous kinds of zero ozone-depleting potential (ODP) refrigerants, such as carbon dioxide and hydrofuorocarbons (HFCs). Their insufficient solubility is the fundamental cause of this. As fossil fuel reserves dwindle, the emergence of the “green revolution” has the potential to be as transformative as previous industrial and computer revolutions. The bioeconomic society advocates for the sustainable industrial advancement of bio-based products and bioenergy. Developing competitive replacement products and technologies utilizing renewable resources poses a significant challenge. Hence, exploring state-of-the-art biolubricant technology is timely and imperative. This chapter discusses the various applications of biolubricants in various engineering fields.
Abstract
Lubricants, commonly utilized in machinery to minimize friction, typically stem from petrochemical or mineral origins. Concerns over the environmental impact of mineral-based lubricants have spurred exploration into biodegradable alternatives. Vegetable oils present promising biodegradability and rheological traits at elevated temperatures, albeit exhibiting deficiencies in cold flow properties. The environmental ramifications of conventional lubricants, coupled with oil source depletion, have fueled demand for renewable and biodegradable lubricants. Biolubricants offer several benefits over mineral oil lubricants, including superior biodegradability, minimal toxicity, excellent lubricating capabilities, and limited adverse effects on both the environment and human health. Compressors are devices that raise a gas’s pressure by using mechanical force. Vacuum pumps are compressors that produce vacuum by operating under suction pressure. In these applications, lubricants serve as a liquid seal, lubricate moving components, such as bearings and gears, and dissipate heat. Given that the lubricant frequently operates in an unfriendly environment, this can be a challenging operation. Almost any sort of machine should use a synthetic lubricant for a variety of reasons. Each synthetic form may have unique benefits, but none is superior in every way. In the past, mineral oils were used to lubricate the compressors in refrigeration systems. They operate poorly with numerous kinds of zero ozone-depleting potential (ODP) refrigerants, such as carbon dioxide and hydrofuorocarbons (HFCs). Their insufficient solubility is the fundamental cause of this. As fossil fuel reserves dwindle, the emergence of the “green revolution” has the potential to be as transformative as previous industrial and computer revolutions. The bioeconomic society advocates for the sustainable industrial advancement of bio-based products and bioenergy. Developing competitive replacement products and technologies utilizing renewable resources poses a significant challenge. Hence, exploring state-of-the-art biolubricant technology is timely and imperative. This chapter discusses the various applications of biolubricants in various engineering fields.
Chapters in this book
- Frontmatter I
- Aim and Scope VII
- Acknowledgment IX
- Preface XI
- List of Contributing Authors XIII
- Contents XVII
- 1 Bio-based materials: origin, synthesis, and properties 1
- 2 Bio-based polymers: processing and applications 25
- 3 Cellulose: biomedical and engineering applications 43
- 4 Chitosan in orthopedics: current advancements and future prospects 59
- 5 Bio-based materials in drug delivery 79
- 6 Prospects of functional nano-manufactured scaffolds in tissue engineering applications 107
- 7 Additive manufacturing in fabrication of orthopedic implants 127
- 8 Analysis of surface acoustic wave in a polymer-coated piezo-electro-magnetic structure with micro-inertia effect 163
- 9 Biodegradable polymers-based proton exchange membrane for fuel cells 183
- 10 Bio-based carbon materials for applications in supercapacitors: an energy storage system 193
- 11 Bio-based materials in advanced packaging applications 205
- 12 Biorefinery development feedstocks derived and possible solutions for a sustainable environment 233
- 13 Biolubricants and its application in engineering 271
- 14 Bio-based materials in advance separation processes 297
- 15 The influence of imperfect interface of shear wave propagation on layered bio-based plate material: computational study of bio-based systems 319
- 16 Bio-based materials for adsorption and catalysis 333
- About the editors 345
- Index 347
Chapters in this book
- Frontmatter I
- Aim and Scope VII
- Acknowledgment IX
- Preface XI
- List of Contributing Authors XIII
- Contents XVII
- 1 Bio-based materials: origin, synthesis, and properties 1
- 2 Bio-based polymers: processing and applications 25
- 3 Cellulose: biomedical and engineering applications 43
- 4 Chitosan in orthopedics: current advancements and future prospects 59
- 5 Bio-based materials in drug delivery 79
- 6 Prospects of functional nano-manufactured scaffolds in tissue engineering applications 107
- 7 Additive manufacturing in fabrication of orthopedic implants 127
- 8 Analysis of surface acoustic wave in a polymer-coated piezo-electro-magnetic structure with micro-inertia effect 163
- 9 Biodegradable polymers-based proton exchange membrane for fuel cells 183
- 10 Bio-based carbon materials for applications in supercapacitors: an energy storage system 193
- 11 Bio-based materials in advanced packaging applications 205
- 12 Biorefinery development feedstocks derived and possible solutions for a sustainable environment 233
- 13 Biolubricants and its application in engineering 271
- 14 Bio-based materials in advance separation processes 297
- 15 The influence of imperfect interface of shear wave propagation on layered bio-based plate material: computational study of bio-based systems 319
- 16 Bio-based materials for adsorption and catalysis 333
- About the editors 345
- Index 347