2 Metal-organic framework properties
-
Muhammad Pervaiz
, Talha Mumtaz , Zohaib Saeed , Shahzad Shareef , Ayoub Rashid , Syed Mohsin Ali Naqvi , Ahmad Adnan , Umer Younas and Ikram Ahmad
Abstract
Metal-organic frameworks (MOFs) are crystalline materials with metal ions which are connected to organic ligands. MOF’s belongs to a large family of nanoporous materials. These are the organic crystalline compounds which are formed by a group of atoms of metal which are connected together by an organic linker in 3D structure. MOFs can generate luminescence in variety of ways which may include MLCT, LMCT, LLCT, MMCT, and so in. Here, M means metal, L means ligand, and CT means charge transfer. There comes new class of materials by connecting the crystalline structures of MOFs and produce an order in which they conduct electricity and produce any materials such as electrical sensors and many more. To produce MOFs which are good conductors of electricity, many strategies are formed. MOFs are well known materials because of their porosity and surface area. Essential and appropriate materials which link the MOFs with each other and the nodes of metal are used to tune the arrangements and pore size of the MOFs. Moreover, scalability and process ability are rosy properties of MOFs.
Abstract
Metal-organic frameworks (MOFs) are crystalline materials with metal ions which are connected to organic ligands. MOF’s belongs to a large family of nanoporous materials. These are the organic crystalline compounds which are formed by a group of atoms of metal which are connected together by an organic linker in 3D structure. MOFs can generate luminescence in variety of ways which may include MLCT, LMCT, LLCT, MMCT, and so in. Here, M means metal, L means ligand, and CT means charge transfer. There comes new class of materials by connecting the crystalline structures of MOFs and produce an order in which they conduct electricity and produce any materials such as electrical sensors and many more. To produce MOFs which are good conductors of electricity, many strategies are formed. MOFs are well known materials because of their porosity and surface area. Essential and appropriate materials which link the MOFs with each other and the nodes of metal are used to tune the arrangements and pore size of the MOFs. Moreover, scalability and process ability are rosy properties of MOFs.
Chapters in this book
- Frontmatter I
- Acknowledgments V
- Contents VII
- List of contributors IX
- 1 Metal-organic framework introduction 1
- 2 Metal-organic framework properties 13
- 3 Metal-organic framework for heterogeneous catalysis 21
- 4 Homogeneous catalysis using MOFs 29
- 5 MOF: an emerging material for biomedical applications 35
- 6 Pharmaceutical wastes: an overview 51
- 7 Recent advancement and development in MOF-based materials for the removal of pharmaceutical waste 73
- 8 Future prospective of metal-organic frameworks for pharmaceutical wastes 95
- 9 MOF – a promising material for energy applications 109
- 10 Polymer-coated MOF for pharmaceutical waste removal 137
- 11 MOF-derived nanocomposites for the removal of ciprofloxacin 157
- Index 177
Chapters in this book
- Frontmatter I
- Acknowledgments V
- Contents VII
- List of contributors IX
- 1 Metal-organic framework introduction 1
- 2 Metal-organic framework properties 13
- 3 Metal-organic framework for heterogeneous catalysis 21
- 4 Homogeneous catalysis using MOFs 29
- 5 MOF: an emerging material for biomedical applications 35
- 6 Pharmaceutical wastes: an overview 51
- 7 Recent advancement and development in MOF-based materials for the removal of pharmaceutical waste 73
- 8 Future prospective of metal-organic frameworks for pharmaceutical wastes 95
- 9 MOF – a promising material for energy applications 109
- 10 Polymer-coated MOF for pharmaceutical waste removal 137
- 11 MOF-derived nanocomposites for the removal of ciprofloxacin 157
- Index 177