2 Advancements in cancer chemotherapy
-
Krzysztof Koper
, Sławomir Wileński and Agnieszka Koper
Abstract
Chemotherapy is in most cases a method of systemic treatment of malignant tumors with cytostatic drugs. Although modern methods such as immunotherapy or targeted therapy are used more and more often nowadays, the role of chemotherapy in oncology is still significant. It can be used as an independent treatment method or in combination with other oncological therapies. The action of chemotherapy is closely linked to the cell cycle of the tumor. Advances in technology allow the introduction of different pharmaceutical forms of the same drug. Worse prognosis of metastatic tumors justifies the need to search for new, more effective treatment methods. The main problem of chemotherapy is the occurrence of adverse events. Reducing the frequency and severity of side effects is possible primarily by changing the technique of implementation of chemotherapy administration. These principles are fulfilled by new, increasingly popular therapeutic methods, such as: Perioperative Hyperthermic Intraperitoneal Chemotherapy (HIPEC), Pressurized Intraperitoneal Aerosol Chemotherapy (PIPAC) or transarterial chemoembolization (TACE). The dynamic development of knowledge concerning cytostatic drugs, including targeting the tumor cell with the form of the drug, allows us to assume that in the future this direction will increase the effectiveness and safety of anticancer therapy.
Abstract
Chemotherapy is in most cases a method of systemic treatment of malignant tumors with cytostatic drugs. Although modern methods such as immunotherapy or targeted therapy are used more and more often nowadays, the role of chemotherapy in oncology is still significant. It can be used as an independent treatment method or in combination with other oncological therapies. The action of chemotherapy is closely linked to the cell cycle of the tumor. Advances in technology allow the introduction of different pharmaceutical forms of the same drug. Worse prognosis of metastatic tumors justifies the need to search for new, more effective treatment methods. The main problem of chemotherapy is the occurrence of adverse events. Reducing the frequency and severity of side effects is possible primarily by changing the technique of implementation of chemotherapy administration. These principles are fulfilled by new, increasingly popular therapeutic methods, such as: Perioperative Hyperthermic Intraperitoneal Chemotherapy (HIPEC), Pressurized Intraperitoneal Aerosol Chemotherapy (PIPAC) or transarterial chemoembolization (TACE). The dynamic development of knowledge concerning cytostatic drugs, including targeting the tumor cell with the form of the drug, allows us to assume that in the future this direction will increase the effectiveness and safety of anticancer therapy.
Chapters in this book
- Frontmatter I
- Preface V
- Contents VII
- List of contributing authors XIII
- 1 Personalized and targeted therapies 1
- 2 Advancements in cancer chemotherapy 27
- 3 Principles of radiation therapy 51
- 4 Advanced cell culture techniques for cancer research 81
- 5 Natural substances in cancer—do they work? 103
- 6 The application of the natural killer cells, macrophages and dendritic cells in treating various types of cancer 137
- 7 Non-radioactive imaging strategies for in vivo immune cell tracking 173
- 8 Present trends in the encapsulation of anticancer drugs 193
- 9 3D tumor model – a platform for anticancer drug development 213
- Index 241
Chapters in this book
- Frontmatter I
- Preface V
- Contents VII
- List of contributing authors XIII
- 1 Personalized and targeted therapies 1
- 2 Advancements in cancer chemotherapy 27
- 3 Principles of radiation therapy 51
- 4 Advanced cell culture techniques for cancer research 81
- 5 Natural substances in cancer—do they work? 103
- 6 The application of the natural killer cells, macrophages and dendritic cells in treating various types of cancer 137
- 7 Non-radioactive imaging strategies for in vivo immune cell tracking 173
- 8 Present trends in the encapsulation of anticancer drugs 193
- 9 3D tumor model – a platform for anticancer drug development 213
- Index 241