Startseite Mathematik FOTF Toolbox for fractional-order control systems
Kapitel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

FOTF Toolbox for fractional-order control systems

  • Dingyü Xue
Veröffentlichen auch Sie bei De Gruyter Brill
Volume 6 Applications in Control
Ein Kapitel aus dem Buch Volume 6 Applications in Control

Abstract

Handy and reliable computer tools are helpful for the researchers to handle their research problems. In Section 1, a brief review to MATLAB toolboxes in fractional-order systems is given, and the main toolbox involved in this chapter, FOTF Toolbox, is briefly addressed. The use of the major functions in the FOTF Toolbox is described and demonstrated through examples. In Section 2, numerical functions for computing Mittag-Leffler function, fractional-order derivatives and integrals are presented. The Grünwald-Letnikov and Caputo definitions are both considered. In particular, o(hp) high precision algorithms are proposed and implemented in the FOTF Toolbox, with much higher accuracy than any other existing algorithms and tools. MATLAB solvers for linear and fractionalorder differential equations are provided. In Section 3, a Simulink based blockset, fotflib, is introduced and its applications in solving fractional-order differential equations are addressed. A unified modeling strategy for nonlinear Caputo equation with any complexity is introduced, and illustrated through examples. In Section 4, two classes for linear fractional-order control components are designed and demonstrated. With these classes, complicated linear system models can be constructed, and time and frequency domain analysis can be carried out easily, as if one is processing integer-order models. In Section 5, several controller design examples are proposed, where an optimal fractional-order PID controller design function and interface are proposed first, followed by two examples in multivariable fractional-order controller design: pseudodiagonalization controller design and parameter optimization controller design. Simulation methods of closed-loop multivariable control systems are also demonstrated.

Abstract

Handy and reliable computer tools are helpful for the researchers to handle their research problems. In Section 1, a brief review to MATLAB toolboxes in fractional-order systems is given, and the main toolbox involved in this chapter, FOTF Toolbox, is briefly addressed. The use of the major functions in the FOTF Toolbox is described and demonstrated through examples. In Section 2, numerical functions for computing Mittag-Leffler function, fractional-order derivatives and integrals are presented. The Grünwald-Letnikov and Caputo definitions are both considered. In particular, o(hp) high precision algorithms are proposed and implemented in the FOTF Toolbox, with much higher accuracy than any other existing algorithms and tools. MATLAB solvers for linear and fractionalorder differential equations are provided. In Section 3, a Simulink based blockset, fotflib, is introduced and its applications in solving fractional-order differential equations are addressed. A unified modeling strategy for nonlinear Caputo equation with any complexity is introduced, and illustrated through examples. In Section 4, two classes for linear fractional-order control components are designed and demonstrated. With these classes, complicated linear system models can be constructed, and time and frequency domain analysis can be carried out easily, as if one is processing integer-order models. In Section 5, several controller design examples are proposed, where an optimal fractional-order PID controller design function and interface are proposed first, followed by two examples in multivariable fractional-order controller design: pseudodiagonalization controller design and parameter optimization controller design. Simulation methods of closed-loop multivariable control systems are also demonstrated.

Heruntergeladen am 15.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/9783110571745-011/html
Button zum nach oben scrollen