Kapitel
Lizenziert
Nicht lizenziert
Erfordert eine Authentifizierung
Appendix 1. Some Additional Remarks on Napier’s Logarithms
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Kapitel in diesem Buch
- Frontmatter I
- Contents IX
- Preface XI
- 1. John Napier, 1614 1
- 2 Recognition 11
- Computing with Logarithms 18
- 3 Financial Matters 23
- 4. To the Limit, If It Exists 28
- Some Curious Numbers Related to e 37
- 5. Forefathers of the Calculus 40
- 6. Prelude to Breakthrough 49
- Indivisibles at Work 56
- 7. Squaring the Hyperbola 58
- 8. The Birth of a New Science 70
- 9. The Great Controversy 83
- The Evolution of a Notation 95
- 10 ex: The Function That Equals Its Own Derivative 98
- The Parachutist 109
- Can Perceptions Be Quantified? 111
- 11 eθ Spira Mirabilis 114
- A Historic Meeting between J. S. Bach and Johann Bernoulli 129
- The Logarithmic Spiral in Art and Nature 134
- 12 (ex + e-x)/2: The Hanging Chain 140
- Remarkable Analogies 147
- Some Interesting Formulas Involving e 151
- 13 eix. “The Most Famous of All Formulas” 153
- A Curious Episode in the History of e 162
- 14 ex+iy: The Imaginary Becomes Real 164
- A Most Remarkable Discovery 183
- 15. But What Kind of Number Is It? 187
-
Appendixes
- Appendix 1. Some Additional Remarks on Napier’s Logarithms 199
- Appendix 2. The Existence of lim (1+1/n)n as n→∞ 201
- Appendix 3. A Heuristic Derivation of the Fundamental Theorem of Calculus 204
- Appendix 4. The Inverse Relation between lim (bh-1)/h = 1 and lim (1+h)1/h as h→0 206
- Appendix 5. An Alternative Definition of the Logarithmic Function 207
- Appendix 6. Two Properties of the Logarithmic Spiral 209
- Appendix 7. Interpretation of the Parameter Hyperbolic Functions 212
- Appendix 8. e to One Hundred Decimal Places 215
- Bibliography 217
- Index 221
Kapitel in diesem Buch
- Frontmatter I
- Contents IX
- Preface XI
- 1. John Napier, 1614 1
- 2 Recognition 11
- Computing with Logarithms 18
- 3 Financial Matters 23
- 4. To the Limit, If It Exists 28
- Some Curious Numbers Related to e 37
- 5. Forefathers of the Calculus 40
- 6. Prelude to Breakthrough 49
- Indivisibles at Work 56
- 7. Squaring the Hyperbola 58
- 8. The Birth of a New Science 70
- 9. The Great Controversy 83
- The Evolution of a Notation 95
- 10 ex: The Function That Equals Its Own Derivative 98
- The Parachutist 109
- Can Perceptions Be Quantified? 111
- 11 eθ Spira Mirabilis 114
- A Historic Meeting between J. S. Bach and Johann Bernoulli 129
- The Logarithmic Spiral in Art and Nature 134
- 12 (ex + e-x)/2: The Hanging Chain 140
- Remarkable Analogies 147
- Some Interesting Formulas Involving e 151
- 13 eix. “The Most Famous of All Formulas” 153
- A Curious Episode in the History of e 162
- 14 ex+iy: The Imaginary Becomes Real 164
- A Most Remarkable Discovery 183
- 15. But What Kind of Number Is It? 187
-
Appendixes
- Appendix 1. Some Additional Remarks on Napier’s Logarithms 199
- Appendix 2. The Existence of lim (1+1/n)n as n→∞ 201
- Appendix 3. A Heuristic Derivation of the Fundamental Theorem of Calculus 204
- Appendix 4. The Inverse Relation between lim (bh-1)/h = 1 and lim (1+h)1/h as h→0 206
- Appendix 5. An Alternative Definition of the Logarithmic Function 207
- Appendix 6. Two Properties of the Logarithmic Spiral 209
- Appendix 7. Interpretation of the Parameter Hyperbolic Functions 212
- Appendix 8. e to One Hundred Decimal Places 215
- Bibliography 217
- Index 221