Kapitel
Lizenziert
Nicht lizenziert
Erfordert eine Authentifizierung
8. The Birth of a New Science
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Kapitel in diesem Buch
- Frontmatter I
- Contents IX
- Preface XI
- 1. John Napier, 1614 1
- 2 Recognition 11
- Computing with Logarithms 18
- 3 Financial Matters 23
- 4. To the Limit, If It Exists 28
- Some Curious Numbers Related to e 37
- 5. Forefathers of the Calculus 40
- 6. Prelude to Breakthrough 49
- Indivisibles at Work 56
- 7. Squaring the Hyperbola 58
- 8. The Birth of a New Science 70
- 9. The Great Controversy 83
- The Evolution of a Notation 95
- 10 ex: The Function That Equals Its Own Derivative 98
- The Parachutist 109
- Can Perceptions Be Quantified? 111
- 11 eθ Spira Mirabilis 114
- A Historic Meeting between J. S. Bach and Johann Bernoulli 129
- The Logarithmic Spiral in Art and Nature 134
- 12 (ex + e-x)/2: The Hanging Chain 140
- Remarkable Analogies 147
- Some Interesting Formulas Involving e 151
- 13 eix. “The Most Famous of All Formulas” 153
- A Curious Episode in the History of e 162
- 14 ex+iy: The Imaginary Becomes Real 164
- A Most Remarkable Discovery 183
- 15. But What Kind of Number Is It? 187
-
Appendixes
- Appendix 1. Some Additional Remarks on Napier’s Logarithms 199
- Appendix 2. The Existence of lim (1+1/n)n as n→∞ 201
- Appendix 3. A Heuristic Derivation of the Fundamental Theorem of Calculus 204
- Appendix 4. The Inverse Relation between lim (bh-1)/h = 1 and lim (1+h)1/h as h→0 206
- Appendix 5. An Alternative Definition of the Logarithmic Function 207
- Appendix 6. Two Properties of the Logarithmic Spiral 209
- Appendix 7. Interpretation of the Parameter Hyperbolic Functions 212
- Appendix 8. e to One Hundred Decimal Places 215
- Bibliography 217
- Index 221
Kapitel in diesem Buch
- Frontmatter I
- Contents IX
- Preface XI
- 1. John Napier, 1614 1
- 2 Recognition 11
- Computing with Logarithms 18
- 3 Financial Matters 23
- 4. To the Limit, If It Exists 28
- Some Curious Numbers Related to e 37
- 5. Forefathers of the Calculus 40
- 6. Prelude to Breakthrough 49
- Indivisibles at Work 56
- 7. Squaring the Hyperbola 58
- 8. The Birth of a New Science 70
- 9. The Great Controversy 83
- The Evolution of a Notation 95
- 10 ex: The Function That Equals Its Own Derivative 98
- The Parachutist 109
- Can Perceptions Be Quantified? 111
- 11 eθ Spira Mirabilis 114
- A Historic Meeting between J. S. Bach and Johann Bernoulli 129
- The Logarithmic Spiral in Art and Nature 134
- 12 (ex + e-x)/2: The Hanging Chain 140
- Remarkable Analogies 147
- Some Interesting Formulas Involving e 151
- 13 eix. “The Most Famous of All Formulas” 153
- A Curious Episode in the History of e 162
- 14 ex+iy: The Imaginary Becomes Real 164
- A Most Remarkable Discovery 183
- 15. But What Kind of Number Is It? 187
-
Appendixes
- Appendix 1. Some Additional Remarks on Napier’s Logarithms 199
- Appendix 2. The Existence of lim (1+1/n)n as n→∞ 201
- Appendix 3. A Heuristic Derivation of the Fundamental Theorem of Calculus 204
- Appendix 4. The Inverse Relation between lim (bh-1)/h = 1 and lim (1+h)1/h as h→0 206
- Appendix 5. An Alternative Definition of the Logarithmic Function 207
- Appendix 6. Two Properties of the Logarithmic Spiral 209
- Appendix 7. Interpretation of the Parameter Hyperbolic Functions 212
- Appendix 8. e to One Hundred Decimal Places 215
- Bibliography 217
- Index 221