Home Technology Analysis of heterogeneous boron dilution transients during outages with APROS 3D nodal core model
Article
Licensed
Unlicensed Requires Authentication

Analysis of heterogeneous boron dilution transients during outages with APROS 3D nodal core model

  • J. Kuopanportti
Published/Copyright: August 24, 2015
Become an author with De Gruyter Brill

Abstract

A diluted water plug can form inside the primary coolant circuit if the coolant flow has stopped at least temporarily. The source of the clean water can be external or the fresh water can build up internally during boiling/condensing heat transfer mode, which can occur if the primary coolant inventory has decreased enough during an accident. If the flow restarts in the stagnant primary loop, the diluted water plug can enter the reactor core. During outages after the fresh fuel has been loaded and the temperature of the coolant is low, the dilution potential is the highest because the critical boron concentration is at the maximum. This paper examines the behaviour of the core as clean or diluted water plugs of different sizes enter the core during outages. The analysis were performed with the APROS 3D nodal core model of Loviisa VVER-440, which contains an own flow channel and 10 axial nodes for each fuel assembly. The wide-range cross section data was calculated with CASMO-4E. According to the results, the core can withstand even large pure water plugs without fuel failures on natural circulation. The analyses emphasize the importance of the simulation of the backflows inside the core when the reactor is on natural circulation.

Kurzfassung

Ein Pfropfen niedrig borierten Wassers kann sich innerhalb des Primärkühlkreislaufs bilden, wenn die Kühlmittelströmung zumindest zeitweise gestoppt wird. Dabei kann das niedrig borierte oder reine Wasser entweder extern eingespeist werden oder sich bei Siede/Kondensationsvorgängen während der Störfallszenarien intern bilden. Beim Wiedereinsetzen der Strömung aus dem Ruhezustand im Primärkreislauf, kann dieser Pfropfen in den Kern transportiert werden. Ereignisse mit Stromausfall nach dem Beladen des Kerns mit frischem Brennstoff und bei niedrigen Temperaturen können am ehesten zu Transienten mit Bildung dieser Pfropfen führen, da zu diesem Zeitpunkt die maximalen kritischen Borkonzentrationen erreicht werden. In diesem Beitrag werden Rechnungen zum Kernverhalten bei Vorliegen von reinen oder niedrig borierten Wasserpfropfen mit dem APROS 3D Kernmodell des WWER-440 Loviisa vorgestellt. Die notwendigen Querschnittsdaten des Brennstoffs wurden mit dem Programm CASMO-4E bestimmt. Die Rechnungen zeigten, dass der Kern sogar auf große reine Wasserpfropfen ohne Brennstoffversagen reagiert, wenn Naturkonvektion vorliegt. Besonderes Augenmerk muss auf die korrekte Berechnung der Rückströmungen im Kern beim Naturumlauf gelegt werden.


* E-mail:

References

1 Hyvärinen, J.: The inherent boron dilution mechanism in pressurized water reactors. Finnish Centre for Radiation and Nuclear Safety (STUK). Nuclear Engineering and Design145 (1993) 22710.1016/0029-5493(93)90069-LSearch in Google Scholar

2 Hertlein, R. J. etal.: Experimental and numerical investigation of boron dilution transients in pressurized water reactors. Nuclear Technology141 (2003) 8810.13182/NT03-A3353Search in Google Scholar

3 Kliem, S.; Rohde, U.; Weiß, F. P.: Core response of a PWR to a slug of under-borated water. Nuclear Engineering and Design230 (2004) 12110.1016/j.nucengdes.2003.11.021Search in Google Scholar

4 Diamond, D.; Bromley, B.; Aronson, A.: Analysis of boron dilution transients in PWRs. Proceedings of the PHYSOR 2004, BNL-NUREG-71996-2004-CP, 4th February 2004Search in Google Scholar

5 APROS Process Simulation Software. Webpage http://www.apros.fi/, cited 28th May 2015Search in Google Scholar

6 APROS quality and validation. Webpage http://www.apros.fi/en/quality_validation, cited 28th May 2015Search in Google Scholar

7 Kantee, H.; Kontio, H.: APROS analysis of Loviisa sump strainer study. Fortum Nuclear Services Ltd, Proceedings of the 18th International Conference on Nuclear Engineering ICON18, Xi'an, China, 17th–21st May 201010.1115/icone18-29725Search in Google Scholar

8 Kaloinen, E.; Teräsvirta, R.; Siltanen, P.: HEXBU-3D, a three-dimensional PWR-simulator program for hexagonal fuel assemblies. Technical Research Centre of Finland, 7/1981, June 1981Search in Google Scholar

9 Kaloinen, E.: New Version of the HEXBU-3D Code. 2nd Symposium of the AER for Investigating Neutron Physics and Thermohydraulics Problems for Reactor Safety. Paks, Hungary, 21st–26th September 1992Search in Google Scholar

10 Rintala, J.: Implementation of the neutronic model of HEXTRAN/HEXBU-3D into APROS for VVER calculations. VTT Technical Research Centre of Finland, presented in 18th AER symposium on VVER reactor physics and reactor safety, Eger, Hungary, 6th–10th October 2008Search in Google Scholar

11 Rintala, J.: Progress in implementation of the neutronic model of HEXTRAN into APROS, Technical Research Centre of Finland, presented in 19th AER symposium, Varna, Bulgaria, 21st–25th September 2009Search in Google Scholar

12 Rintala, J.: Validation of new 3-D neutronics model in APROS for hexagonal geometry. Technical Research Centre of Finland, presented in 20th AER symposium, Espoo Finland, 20th–24th September 2010Search in Google Scholar

13 Rintala, J.: Overview of the validation of the new 3-D neutronics model in APROS, Technical Research Centre of Finland, presented in 21st AER symposium, Dresden Germany, 19th–23rd September 2011Search in Google Scholar

14 Rintala, J.: Implementation of neutronics model of HEXTRAN&TRAB-3D into APROS, Technical Research Centre of Finland, presented in 20th international conference Nuclear Energy for New Europe, Bovec, Slovenia, 12th–15th September. 2011Search in Google Scholar

15 Lahtinen, T.; Saarinen, S.; Antila, M.: Effect of HEXBU-3D feedback and boundary condition models on the calculated reactor core characteristics of Loviisa NPP. Fortum Nuclear Services Ltd, presented in 18th AER symposium, Eger, Hungary, 6th–10th October 2008Search in Google Scholar

16 Peltonen, J.: A cross section model for nuclear reactor core simulation codes. Licentiate's thesis. Helsinki University of Technology, Department of Engineering Physics and Mathematics, May 19th1999. In FinnishSearch in Google Scholar

17 Rhodes, J.; Smith, K.; Edenius, M.: CASMO-4E, Extended Capability CASMO-4, User's Manual. Studsvik Scandpower, Proprietary SPP-01/401 Rev 2, 2004Search in Google Scholar

Received: 2015-01-28
Published Online: 2015-08-24
Published in Print: 2015-08-27

© 2015, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents/Inhalt
  2. Contents
  3. Summaries/Kurzfassungen
  4. Summaries
  5. Editorial
  6. Research on the reactor physics and reactor safety of VVER reactors – AER Symposium 2014
  7. Technical Contributions/Fachbeiträge
  8. Assessment of the uncertainties of MULTICELL calculations by the OECD NEA UAM PWR pin cell burnup benchmark
  9. Development of codes and KASKAD complex
  10. Applying full multigroup cell characteristics from MCU code to finite difference calculations of neutron field in VVER core
  11. Calculations of 3D full-scale VVER fuel assembly and core models using MCU and BIPR-7A codes
  12. An analysis of reactivity prediction during the reactor start-up process
  13. Experimental and computational investigations of heat and mass transfer of intensifier grids
  14. Implementation of CFD module in the KORSAR thermal-hydraulic system code
  15. Numerical and experimental investigation of 3D coolant temperature distribution in the hot legs of primary circuit of reactor plant with WWER-1000
  16. Analyses of Beyond Design Basis Accident Homogeneous Boron Dilution Scenarios
  17. Analysis of heterogeneous boron dilution transients during outages with APROS 3D nodal core model
  18. Prospects of subcritical molten salt reactor for minor actinides incineration in closed fuel cycle
  19. Usage of burnt fuel isotopic compositions from engineering codes in Monte-Carlo code calculations
  20. Neutron-kinetic and thermo-hydraulic uncertainties in the study of Kalinin-3 benchmark
  21. Inter-assembly gap deviations in VVER-1000: Accounting for effects on engineering margin factors
Downloaded on 10.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110513/pdf
Scroll to top button