Home Study on carbonated hydroxyapatite as a thermoluminescence dosimeter
Article
Licensed
Unlicensed Requires Authentication

Study on carbonated hydroxyapatite as a thermoluminescence dosimeter

  • M. Shafaei , F. Ziaie , D. Sardari and M. M. Larijani
Published/Copyright: March 21, 2015
Become an author with De Gruyter Brill

Abstract

In this study, carbonated hydroxyapatite nanoparticles were used for thermoluminescence dosimetry. The nano-structure carbonated hydroxyapatite synthesized via hydrolysis of CaHPO4 and CaCO3. The obtained nano powders were characterized by XRD technique and FTIR spectroscopy system. The carbonated hydroxyapatite samples were irradiated at different doses using 60Co gamma rays, and were subjected to thermoluminescence measurement system, consequently. The TL glow curve exhibited two distinguishable peaks centered at around of 165°C and 310°C. The TL response of carbonated hydroxyapatite samples as a function of absorbed dose was linear in the range of 25–1000 Gy. Other dosimetric features of the carbonated hydroxyapatite nanoparticles including fading and reproducibility were also investigated.

Kurzfassung

In dieser Studie wurden karbonisierte Hydroxylapatit Nanoteilchen zur Thermolumineszenzdosimetrie verwendet. Die Nanostruktur von karbonisiertem Hydroxylapatit wurde synthetisiert mittels Hydrolyse von CaHPO4 und CaCO3. Die Eigenschaften der erhaltenen Nanoteilchen wurden mit Hilfe des XRD-Verfahrens und einem FTIR Spektroskopiesystem bestimmt. Die karbonisierten Hydroxylapatit Proben wurden mit verschiedenen Dosen 60Co Strahlung bestrahlt und anschließend einer Thermolumineszenzanalyse unterzogen. Die TL Glow-Kurve zeigt zwei erkennbare Peaks bei 165°C und 310°C. Die TL Rückmeldung in Bezug auf die karbonisierten Hydroxylapatit Proben als Funktion der Energiedosis ist linear im Bereich 25–1000 Gy. Andere dosimetrische Merkmale der karbonisierten Hydroxylapatit Nanoteilchen einschließlich Fading und Reproduzierbarkeit wurden ebenfalls untersucht.


* Corresponding author:

References

1 Bhatt, B.; Kulkarni, M.: Thermoluminescent Phosphors for Radiation Dosimetry. Paper presented at the Defect and Diffusion Forum, (2014)10.4028/www.scientific.net/DDF.347.179Search in Google Scholar

2 Ziaie, F.; Hajiloo, N.; Alipour, A.; Amraei, R.; Mehtieva, S.: Retrospective dosimetry using synthesized nano-structure hydroxyapatite. Radiation protection dosimetry145 (2011) 37738410.1093/rpd/ncq443Search in Google Scholar PubMed

3 Lanjanian, H.; Ziaie, F.; Modarresi, M.; Nikzad, M.; Shahvar, A.; Durrani, S.: A technique to measure the absorbed dose in human tooth enamel using EPR method. Radiation Measurements43 (2008) 648S65010.1016/j.radmeas.2008.04.031Search in Google Scholar

4 Hajiloo, N.; Ziaie, F.; Mehtieva, S.: Gamma-irradiated EPR response of nano-structure hydroxyapatite synthesised via hydrolysis method. Radiation protection dosimetry148 (2012) 48749110.1093/rpd/ncr204Search in Google Scholar PubMed

5 Hajiloo, N.; Ziaie, F.; Mehtieva, S.; Hesaraki, S.: Comparison of the performance of synthesized nano-structure hydroxyapatite with bovine bones and alanine samples for EPR dosimetry. Indian Journal of Science and Technology4 (2011) 60861210.17485/ijst/2011/v4i6.4Search in Google Scholar

6 Ziaie, F.; Hajiloo, N.; Fathollahi, H.; Mehtieva, S. I.: Bone powder as EPR dosimetry system for electron and gamma radiation. Nukleonika.54 (2009) 267270Search in Google Scholar

7 Ziaie, F.; Stachowicz, W.; Strzelczak, G.; Al-Osaimi, S.: Using bone powder for dosimetric system EPR response under the action of γ irradiation. Nukleonika44 (1999) 603608Search in Google Scholar

8 Fattibene, P.; Callens, F.: EPR dosimetry with tooth enamel: a review. Applied Radiation and Isotopes68 (2010) 2033211610.1016/j.apradiso.2010.05.016Search in Google Scholar PubMed

9 Oliveira, L.; Rossi, A.; Baffa, O.: A comparative thermoluminescence and electron spin resonance study of synthetic carbonated A-type hydroxyapatite. Applied Radiation and Isotopes70 (2012) 53353710.1016/j.apradiso.2011.11.009Search in Google Scholar PubMed

10 Alvarez, R.; Rivera, T.; Guzman, J.; Piñ-Barba, M.; Azorin, J.: Thermoluminescent characteristics of synthetic hydroxyapatite (SHAp). Applied Radiation and Isotopes83 (2014) 19219510.1016/j.apradiso.2013.04.011Search in Google Scholar PubMed

11 Ziaie, F.; Moein, N. Farhadi; Shafaei, M.: Thermoluminescent characteristics of nano-structure hydroxyapatite:Dy. Kerntechnik79 (2014) 50050310.3139/124.110445Search in Google Scholar

12 Shih, W.-J.; Chen, Y.-F.; Wang, M.-C.; Hon, M.-H.: Crystal growth and morphology of the nano-sized hydroxyapatite powders synthesized from CaHPO4. 2H2O and CaCO3 by hydrolysis method. Journal of crystal growth270 (2004) 21121810.1016/j.jcrysgro.2004.06.023Search in Google Scholar

13 Furetta, C.: Handbook of thermoluminescence. World Scientific, (2003) 10.1142/5167Search in Google Scholar

14 Ślósarczyk, A.; Paszkiewicz, Z.; Paluszkiewicz, C.: FTIR and XRD evaluation of carbonated hydroxyapatite powders synthesized by wet methods. Journal of Molecular Structure744 (2005) 65766110.1016/j.molstruc.2004.11.078Search in Google Scholar

15 Wilson, R. M.; Elliott, J. C.; Dowker, S. E.; Rodriguez-Lorenzo, L. M.: Rietveld refinements and spectroscopic studies of the structure of Ca-deficient apatite. Biomaterials26 (2005) 1317132710.1016/j.biomaterials.2004.04.038Search in Google Scholar PubMed

16 Wang, M.-C.; Hon, M.-H.; Chen, H.-T.; Yen, F.-L.; Hung, I.-M.; Ko, H.-H.; Shih, W.-J.: Process Parameters on the Crystallization and Morphology of Hydroxyapatite Powders Prepared by a Hydrolysis Method. Metallurgical and Materials Transactions A.44 (2013) 3344335210.1007/s11661-013-1662-6Search in Google Scholar

Received: 2014-12-19
Published Online: 2015-03-21
Published in Print: 2015-03-17

© 2015, Carl Hanser Verlag, München

Downloaded on 13.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110484/html
Scroll to top button