Home Preparation, characterization and thermoelectric properties of a polyaniline matrix Ge0.94Pb0.01Bi0.05Te composite
Article
Licensed
Unlicensed Requires Authentication

Preparation, characterization and thermoelectric properties of a polyaniline matrix Ge0.94Pb0.01Bi0.05Te composite

  • Sude Ma , Hao Zeng , Changxing Zhang , Chun Liu , Jianjun Zhang and Qian Xu
Published/Copyright: August 28, 2017
Become an author with De Gruyter Brill

Abstract

In times of industrialization, much low temperature waste heat is released and no viable technology exists which can produce electricity from this low energy density heat. So the long sought-after class thermoelectric (TE) material which directly achieves conversion between thermal and electrical energy obtains much attention. However, the traditional TE materials are alloys of inorganic materials and expensive, and most of them have some level of toxicity, so the research on organic TE materials is very important. The polyaniline (PANI, i. e., a conducting polymer) and PANI matrix Ge0.94Pb0.01Bi0.05Te composite material were prepared. The chemical structure, microstructure and thermoelectric properties were investigated by FTIR, XRD, SEM and ZEM. Results showed that the molecule chains in the PANI were not ranged very neatly, and Ge0.94Pb0.01Bi0.05Te in the composite material formed interconnected network as 20 wt.-% Ge0.94Pb0.01Bi0.05Te was added. Power factor of the composite material increased greatly while its ZT was almost two times of PANI. The addition of Ge0.94Pb0.01Bi0.05Te was an effective method to increase the thermoelectric properties of PANI.

Kurzfassung

Viel Verlustwärme mit niedriger Temperatur entweicht in der heutigen Industralisierung und keine nutzbare Technologie existiert, um Elektrizität aus dieser Wärme mit einer niedrigen Energiedichte zu produzieren. Deshalb bekommen thermoelektrische Materialien, die eine direkte Konversation von thermischer in elektrische Energie erreichen, erhöhte Aufmerksamkeit. Allerdings bestehen die traditionellen thermoelektrischen Materialien aus anorganischen Komponenten und sind teuer. Die meisten davon haben eine gewisse Toxizität, so dass die Erforschung organischer thermoelektrischer Materialien sehr wichtig ist. Hierzu wurde ein Polyanilin (PANI, eine Art leitfähiges Polymer) und ein PANI-Matrix-Ge0.94Pb0.01Bi0.05Te-Kompositmaterial hergestellt. Die chemische Struktur, die Mikrostruktur und die thermoelektrischen Eigenschaften wurden mittels FTIR, XRD, REM und ZEM untersucht. Die Ergebnisse zeigen, dass die Molekülketten im PANI nicht sehr geordnet vorliegen und dass das Ge0.94Pb0.01Bi0.05Te im Kompositmaterial ein zusammenhängendes Netzwerk bildete, wenn 20 wt.-% Ge0.94Pb0.01Bi0.05Te zugesetzt wurden. Der Leistungsfaktor des Kompositmaterials stieg signifikant, während sein ZT etwa das Zweifache des PANI-Werts betrug. Die Zugabe von Ge0.94Pb0.01Bi0.05Te ist ein effektives Verfahren, um die thermoelektrischen Eigenschaften von PANI zu erhöhen.


*Correspondence Address, Prof. Dr. Sude Ma, Key Laboratory of Fluid and Power Machinery of Ministry of Education, Center for Advanced Materials and Energy, Xihua University, No.999, Jinzhou Road, Jinniu District, Chengdu City, Sichuan Province, Chengdu 610039, China, E-mail:

Prof. Dr. Sude Ma, born 1976, is Full Professor of Polymer Science and Engineering at the Center for Advanced Materials and Energy, Xihua University, Chengdu, China, with expertise in functional materials. He received his Master and PhD degrees from Xi'an Jiaotong University, Xi'an, China in 2003 and 2006, respectively, and conducted postdoctoral research at Tsinghua University, Beijing, China from 2008 to 2010. He joined Xihua University in 2011.

Hao Zeng, born 1993, is a master student of Material Sciences and Engineering at the Center for Advanced Materials and Energy, Xihua University, Chengdu, China. He received his Bachelor degree from Xihua University in 2015. In the same year, he joined Prof. Sude Ma's group. His research interest focuses on the preparation and applications of functional materials.

Changxing Zhang, born 1993, is a master student of Material Sciences and Engineering at the Center for Advanced Materials and Energy, Xihua University, Chengdu, China. He received his Bachelor degree from Qingdao University of Technology, China in 2015. In 2016, he joined Prof. Sude Ma's group. His research interest focuses on the preparation and applications of functional materials.

Chun Liu, born in 1992, is a master student of Material Sciences and Engineering at the Center for Advanced Materials and Energy, Xihua University, Chengdu, China. He received his Bachelor degree from Xihua University in 2014. In the same year, he joined Prof. Sude Ma's group. His research interest focuses on the preparation and applications of functional materials.

Associate Prof. Dr. Jianjun Zhang is Associate Professor of Materials Science and Engineering at the School of Materials Science and Engineering, Xihua University, Chengdu, China, with expertise in wear resistant materials. He received his PhD degree from Xi'an Jiaotong University, Xi'an, China, in 2011. He joined Xihua University in 2012.

Qian Xu, born 1991, is a master student of Material Sciences and Engineering at the Center for Advanced Materials and Energy, Xihua University, Chengdu, China. He received his Bachelor degree from Xihua University in 2013. In the same year, he joined Prof. Sude Ma's group. His research interest focuses on the preparation and applications of functional materials.


References

1 X.Chen, C.Li, M.Grätzel, R.Kosteckid, S. S.Mao: Nanomaterials for renewable energy production and storage, Chemical Society Reviews23 (2012), pp. 7909793710.1039/C2CS35230CSearch in Google Scholar PubMed

2 L. E.Bell: Cooling, heating, generating power, and recovering waste heat with thermoelectric systems, Science321 (2008), pp. 1457146110.1126/science.1158899Search in Google Scholar PubMed

3 G.-H.Kim, L.Shao, K.Zhang, K. P.Pipe: Engineered doping of organic semiconductors for enhanced thermoelectric efficiency, Nature Materials12 (2013), No. 8, pp. 71972310.1038/nmat3635Search in Google Scholar PubMed

4 A. A.Abd Rahman, A. A.Umar, M. H. U.Othman: Effect of bismuth telluride concentration on the thermoelectric properties of PEDOT:PSS–glycerol organic films, Physica E66 (2015), pp. 29329810.1016/j.physe.2014.10.032Search in Google Scholar

5 M.Hatami, D. D.Ganji, M.Gorji-Bandpy: A review of different heat exchangers designs for increasing the diesel exhaust waste heat recovery, Renewable and Sustainable Energy Reviews37 (2014), pp. 16818110.1016/j.rser.2014.05.004Search in Google Scholar

6 K.Ebrahimi, G. F.Jones, A. S.Fleischer: A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities, Renewable and Sustainable Energy Reviews31 (2014), pp. 62263810.1016/j.rser.2013.12.007Search in Google Scholar

7 C. A.Hewitt, D. S.Montgomery, R. L.Barbalace, R. D.Carlson, D. L.Carroll: Improved thermoelectric power output from multilayered polyethylenimine doped carbon nanotube based organic composites, Journal of Applied Physics115 (2014), pp. 84502:1–6 10.1063/1.4874375Search in Google Scholar

8 J.Luo, D.Billep, T.Blaudeck, E.Sheremet, R. D.Rodriguez, D. R. T.Zahn, M.Toader, M.Hietschold, T.Otto, T.Gessner: Chemical post-treatment and thermoelectric properties of poly(3,4-ethylenedioxylthiophene):poly(styrenesulfonate) thin films, Journal of Applied Physics115 (2014), pp. 054908:1610.1063/1.4864749Search in Google Scholar

9 J.Niu, N.Lu, L.Li, M.Liu: Polaron effect dependence of thermopower in organic semiconductors, Physics Letters A378 (2014), pp. 3579358110.1016/j.physleta.2014.10.032Search in Google Scholar

10 S.Reenen, M.Kemerink: Correcting for contact geometry in Seebeck coefficient measurements of thin film devices, Organic Electronics15 (2014), pp. 2250225510.1016/j.orgel.2014.06.018Search in Google Scholar

11 M. H.Elsheikh, D. A.Shnawah, M. F. M.Sabri, S. B. M.Said, M. H.Hassan, M. B. A.Bashir, M.Mohamad: A review on thermoelectric renewable energy: Principle parameters that affect their performance, Renewable and Sustainable Energy Reviews30 (2014), pp. 33735510.1016/j.rser.2013.10.027Search in Google Scholar

12 D. A.Wright: Thermoelectric properties of bismuth telluride and its alloys, Nature181 (1958), pp. 83483410.1038/181834a0Search in Google Scholar

13 B.Poudel, Q.Hao, Y.Ma, Y.Lan, A.Minnich, B.Yu, X.Yan, D.Wang, A.Muto, D.Vashaee, X.Chen, J.Liu, M. S.Dresselhaus, G.Chen, Z.Ren: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys, Science320 (2008), pp. 63463810.1126/science.1156446Search in Google Scholar PubMed

14 H.Zhao, J.Sui, Z.Tang, Y.Lan, Q.Jie, D.Kraemer, K.McEnaney, A.Guloy, G.Chen, Z.Ren: High thermoelectric performance of MaAgSb-based materials, Nano Energy7 (2014), pp. 9710310.1016/j.nanoen.2014.04.012Search in Google Scholar

15 Z.Liu, Y.Wang, J.Mao, H.Geng, J.Shuai, Y.Wang, R.He, W.Cai, J.Sui, Z.Ren: Lithium doping to enhance thermoelectric performance of MgAgSb with weak electron-phonon coupling, Advanced Energy Materials6 (2016), pp. 11110.1002/aenm.201502269Search in Google Scholar

16 J. P.Carmo, L. M.Goncalves, J. H.Correia: Thermoelectric microconverter for energy harvesting systems, IEEE Transactions on Industrial Electronics57 (2010), pp. 86186710.1109/TIE.2009.2034686Search in Google Scholar

17 Q.Zhang, H.Wang, W.Liu, H.Wang, B.Yu, Q.Zhang, Z.Tian, N.George, L.Sangyeop, E.Keivan, G.Chen, Z.Ren: Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide, Energy and Environmental Science5 (2012), No. 1, pp. 5246525110.1039/C1EE02465ESearch in Google Scholar

18 Q.Zhang, H.Wang, Q.Zhang, W.Liu, B.Yu, H.Wang, D.Wang, N.George, G.Chen, Z.Ren: Effect of silicon and sodium on thermoelectric properties of thallium doped lead telluride based materials, Nano Letters12 (2012), No. 5, pp. 2324233010.1021/nl3002183Search in Google Scholar PubMed

19 T.Tsai, H.Chang, C.Chen, Y.Huang, W.Whang: A facile dedoping approach for effectively tuning thermoelectricity and acidity of PEDOT:PSS films, Organic Electronics15 (2014), pp. 64164510.1016/j.orgel.2013.12.023Search in Google Scholar

20 T.Tynell, H.Yamauchi, M.Karppinen: Hybrid inorganic-organic superlattice structures with atomic layer deposition/molecular layer deposition, Journal of Vacuum Science and Technology A32 (2014), pp. 01A105:1–6 10.1116/1.4831751Search in Google Scholar

21 Q.Zhang, Y.Sun, W.Xu, D.Zhu: Organic thermoelectric materials: Emerging green energy materials converting heat to electricity directly and efficiently, Advanced Materials26 (2014), pp. 6829685110.1002/adma.201305371Search in Google Scholar PubMed

22 A. G.MacDiarmid, A. J.Epstein: Polyanilines: A novel class of conducting polymers, Faraday Discussions of the Chemical Society88 (1989), pp. 31733210.1039/DC9898800317Search in Google Scholar

23 S.Ma, G.Song, N.Feng, P.Zhao: Corrosion protection of mild steel with nanofibrous polyaniline-based coatings, Journal of Applied Polymer Science125 (2012), pp. 1601160510.1002/app.35643Search in Google Scholar

24 S.Ma, Z.Min, Y.Wang, L.Zhong: Intrinsically conducting polymer-based fabric strain sensors, Polymer International62 (2013), pp. 98399010.1002/pi.4508Search in Google Scholar

25 A. J.Epstein, J. M.Ginder, F.Zuo, R. W.Bigelow, H. S.Woo, D. B.Tanner, A. F.Richter, W. S.Huang, A. G.MacDiarmid: Insulator-to-metal transition in polyaniline, Synthetic Metals18 (1987), No. 1–3, pp. 30330910.1016/0379-6779(87)90896-4Search in Google Scholar

26 W. R.Salaneck, I.Lundström, W.Huang, A. G.Macdiarmid: A two-dimensional-surface ‘state diagram’ for polyaniline, Synthetic Metals13 (1986), No. 4, pp. 29129710.1016/0379-6779(86)90190-6Search in Google Scholar

27 A. G.MacDiarmid: Synthetic metals: A novel role for organic polymers, Synthetic Metals125 (2001), pp. 112210.1002/1521-3773Search in Google Scholar

Published Online: 2017-08-28
Published in Print: 2017-09-01

© 2017, Carl Hanser Verlag, München

Articles in the same Issue

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. Effect of contact pressure on multiaxial fretting fatigue behavior of Al-Zn-Mg alloy
  5. Effect of various initial concentrations of CTAB on the noncovalent modified graphene oxide (MGNO) structure and thermal stability
  6. Bauschinger effect at elevated temperatures in a 2024-T3 aluminum alloy for designing wind turbine components
  7. Effect of Ni interlayer on diffusion bonding of a W alloy and a Ta alloy
  8. Comparison of the welding behavior of P/M borated and I/M borated stainless steel
  9. Detection of interfacial debonding in epoxy resin-bonded lead-steel structure using laser ultrasonics
  10. Effects of deep cryo treatment of high speed steel on the turning process of a medium carbon steel
  11. Weldability of superalloys alloy 718 and ATI® 718Plus™ – A study performed by Varestraint testing
  12. Strength and mechanical response of C/C composite open-hole and bolted plates
  13. Pullout performance of modified threads in glass fiber reinforced plastic (GFRP) composites
  14. Physico-chemical characterization of slag waste from coal gasification syngas plants: Effect of the gasification temperature on slag waste as construction material
  15. Preparation, characterization and thermoelectric properties of a polyaniline matrix Ge0.94Pb0.01Bi0.05Te composite
  16. Surface roughness analysis of greater cutting depths during hard turning
  17. Properties of fine soils contaminated with gas oil
  18. Numerical calculation and stress analysis of crack evolution in coal with a central hole under nonuniform load
Downloaded on 25.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.111073/pdf
Scroll to top button