Home Terahertz Time Domain Spectroscopy for Non-Destructive Testing of Hazardous Liquids
Article
Licensed
Unlicensed Requires Authentication

Terahertz Time Domain Spectroscopy for Non-Destructive Testing of Hazardous Liquids

  • Lars S. von Chrzanowski , Jörg Beckmann , Barbara Marchetti , Uwe Ewert and Ulrich Schade
Published/Copyright: May 26, 2013
Become an author with De Gruyter Brill

Abstract

Hazardous liquids, liquid explosives and flammable liquids are characterized by means of terahertz time domain spectroscopy (THz-TDS) in analogy to existing non-destructive testing (NDT) strategies. Various polar liquids (alcohols, acetone, hydrogen peroxide, nitro methane) and non-polar aircraft and automobile fuels as well as organic solvents are characterized in the practically relevant, non-contact and non-destructive reflection geometry in the time domain. Absorption coefficients and indices of refraction of a representative set of these liquids are investigated in the spectral range between 0.1 THz and 1.1 THz in transmission configuration by two different set-ups either suitable for strongly or weakly absorbing liquids.

Kurzfassung

Flüssige Gefahr- und Brennstoffe sowie explosive Flüssigkeiten werden mittels zeitaufgelöster Terahertz-Spektroskopie (THZ-TDS) in Analogie zu den in der zerstörungsfreien Werkstoffprüfung verwendeten Strategien untersucht. Verschiedene polare Flüssigkeiten (Alkohole, Aceton, Wasserstoffperoxid, Nitromethan), unpolare Flugzeug- und Kraftfahrzeugkraftstoffe sowie organische Lösungsmittel werden in der praxisrelevanten Reflexionsgeometrie berührungs- und zerstörungsfrei im Zeitbereich charakterisiert. Die Absorptions- und Brechungsindizes einer repräsentativen Auswahl von Flüssigkeiten wurden im Frequenzbereich zwischen 0.1 THz und 1.1 THz unter Verwendung der Transmissionsanordnung spektral ermittelt. Die Messkonfiguration wird für stark und schwach absorbierende Flüssigkeiten jeweils angepasst.


Dr. rer. nat. Lars S. von Chrzanowski, born 1974, received the M.S. and Ph.D. degree in chemistry from the Technical University of Berlin, Germany, in 2002 and 2005. Postdoctoral studies in 2006/07 at Utrecht University, the Netherlands referred to the field of small molecule chemical crystallography. From 2008 to 2011 he was fellow at the Federal Institute for Materials Research and Testing BAM, Berlin.

Dr. rer. nat. Jörg Beckmann, born 1959, studied physics at the Technical University Leuna Merseburg and received the Ph.D. at the University of Dresden, Germany. He had postdoc positions at the University of Mainz and at the NIST at Gaithersburg. After joining the BAM he is in the division of Radiological Methods since 2005. He is responsible for research projects in Industrial Digital Radiology and Computed Tomography and applies microwave and THz techniques on non-metallic materials for security applications.

MS Barbara Marchetti, born in 1983, received the Master Degree (with honors) in Physics in 2008 from the University of Rome “Tor Vergata”. She has worked at the BAM as well as at BESSY II (Helmholtz Center for Materials and Energy Berlin HZB). Her research activities is oriented towards machine physics dynamics and diagnostics for linear accelerators and on THz spectroscopy of liquids.

Dr. rer. nat. Uwe Ewert, born 1953, obtained the diploma degree for physical and theoretical chemistry of the Humboldt University in Berlin in 1974. He received the PhD on simulation of electron spin resonance (ESR) spectra in 1979. Then he managed the application laboratory for ESR spectroscopy at the Centre for Scientific Instruments (CSI) of the academy of sciences in Berlin from 1980–1990. Since 1992 he is affiliated with the BAM where he is head of the division “Radiological Methods”.

Dr. rer. nat. Ulrich Schade, born 1958, graduated from the Humboldt University in physics in 1985 and received his PhD in 1990 in semiconductor science. In 1990 he became postdoc at the Tohoku University Sendai and in 1994 he joined the German Aerospace Establishment. Since 2000 he has been with the electron storage ring BESSY II and designed the infrared beamline IRIS. Currently he focuses on infrared synchrotron radiation in material and life sciences.


References

1 Y.Ueno and K.Ajito: Analytical terahertz spectroscopy, Analytical Sciences24 (2008) No 2, pp. 18519210.2116/analsci.24.185Search in Google Scholar

2 B.Fischer, M.Hoffmann, H.Helm, G.Modjesch, and P.U.Jepsen: Chemical recognition in terahertz time domain spectroscopy and imaging, Semicond. Sci. Technol.20 (2005), No 7, pp. 24625310.1088/0268-1242/20/7/015Search in Google Scholar

3 M. R.Leahy-Hoppa, M. J.Fitch, and R.Osiander: Terahertz spectroscopy techniques for explosives detection, Anal. Bioanal. Chem.395 (2009), pp. 24725710.1007/s00216-009-2803-zSearch in Google Scholar

4 A.G.Davies, A.D.Burnett, W.Fan, E.H.Linfield, and J.E.Cunningham: Terahertz spectroscopy of explosives and drugs, Materials Today11 (2008), pp. 182610.1016/S1369-7021(08)70016-6Search in Google Scholar

5 J.F.Federici, B.Schulkin, F.Huang, D.Gary, R.Barat, F.Oliveira, and D.Zimdars: THz imaging and sensing for security appli­cations – explosives, weapons and drugs, Semicond. Sci. Technol.20 (2005), pp. 26628010.1088/0268-1242/20/7/018Search in Google Scholar

6 H.-B.Liu, H.Zhong, N.Karpowicz, Y.Chen, and X.-C.Zhang: Terahertz spectroscopy and imaging for defense and security applications, Proc. IEEE 95 (2007) pp. 15141527Search in Google Scholar

7 J.Chen, Y.Chen, H.Zhao, G.J.Bastiaans, and X.-C.Zhang: Absorption coefficients of selected explosives and related compounds in the range of 0.1-2.8 THz, Opt. Express15 (2007), pp. 120601206710.1364/OE.15.012060Search in Google Scholar

8 M.Ortolani, J.S.Lee, U.Schade, H.-W.Hübers: Surface roughness effects on the terahertz reflectance of pure explosive materials, Appl. Phys. Lett.93, 081906 (2008); doi: 10.1063/1.297340310.1063/1.2973403Search in Google Scholar

9 K.Yamamoto, M.Yamaguchi, F.Miyamaru, M.Tani, M.Hangyo, T.Ikeda, A.Matsushita, K.Koide, M.Tatsuno, and Y.Minami: Noninvasive inspection of C-4 explosive in mails by terahertz time-domain spectroscopy, Japanese Journal of Applied Physics Vol. 43 (2004), No. 3B, pp. L 414L 417Search in Google Scholar

10 Some Detection Procedures for Liquid Explosives M.Stancl and M.Kyncl: Detection of Liquid Explosives and Flammable Agents in Connection with Terrorism, NATO Science for Peace and Security Series B: Physics and Biophysics (2008), pp 799610.1007/978-1-4020-8466-9_9Search in Google Scholar

11 D.Mansel, G.W.F.Pardoe, J.E.Chamberlain and H.A.Gebbie: Submillimetre- and millimetre-wave absorptions of some polar and non-polar liquids measured by fourier transform spectroscopy”, Trans. Faraday Soc.66 (1970), pp. 27329210.1039/tf9706600273Search in Google Scholar

12 U. A.Khan, M. N.Afsar: Measurement of Broadband Dielectric Properties of Cyclohexane, Chlorobenzene, 10 % Formalin, and 1,4-Dioxane Using Dispersive Fourier Transform Spectroscopy, IEEE Transactions on Instrumentation and Measurement56 (2007), No 6, pp. 23542359.10.1109/TIM.2007.908325Search in Google Scholar

13 M.N.Afsar, D.D.Honijk, W.F.Passchier, J.Goulon: Dispersive Fourier transform spectrometry with variable-thickness variable-temperature liquid cells, IEEE Transactions on Microwave Theory and Techniques Vol. MTT-25 (1977), No 6, pp. 505508.10.1109/TMTT.1977.1129146Search in Google Scholar

14 J.E.Heilweil, M.B.Campbell: Terhertz-FTIR screening method for liquid explosives in containers, IP.com Journal (2009) http://ip.com/IPCOM/000180390Search in Google Scholar

15 N.Krumbholz, C.Jansen, M.Scheller; T.Müller-Wirts; S.Lübbecke, R.Holzwarth, R.Scheunemann, R.Wilk, B.Sartorius, H.Roehle, D.Stanze, J.Beckmann, L.S.von Chrzanowski, U.Ewert, M.Koch: Handheld terahertz spectrometer for the detection of liquid explosives, Proc. SPIE 7485, 748504 (2009); doi:10.1117/12.83038110.1117/12.830381Search in Google Scholar

16 T.Ikeda, A.Matsushita, M.Tatsuno, Y.Minami, M.Yamaguchi, K.Yamamoto, M.Tani, and M.Hangyoa: Investigation of inflammable liquids by terahertz spectroscopy, Appl. Phys. Lett. 87, 034105 (2005); doi:10.1063/1.1999847 (3 pages)10.1063/1.1999847Search in Google Scholar

17 F.M.Al-Douseri, Y.Chen, and X.-C.Zhang: THz wave sensing for petroleum industrial applications, J. Infrared Milli. Waves Vol 27 (2006), No 4, pp. 48150310.1007/s10762-006-9102-ySearch in Google Scholar

18 Y.-S.Jin, G.-J.Kim, C.-H.Shon, S.-G.Jeon, and J.-I.Kim: Analysis of petroleum products and their mixtures by using terahertz time domain spectroscopyJournal of the Korean Physical Society, Vol. 53, No. 4, October 2008, pp. 1879188510.3938/jkps.53.3483Search in Google Scholar

19 P.U.Jepsen, J.K.Jensen, and U.Müller: Characterization of aqueous alcohol solutions in bottles with THz reflection spectroscopy, Opt. Express16 (2008), pp. 9318933110.1364/OE.16.009318Search in Google Scholar

20 L.Thrane, R.H.Jacobsen, P.U.Jepsen, and S.R.Keiding: THz reflection spectroscopy of liquid water, Chem. Lett.240 (1995), 33033310.1016/0009-2614(95)00543-DSearch in Google Scholar

21 J.T.Kindt, and C.A.Schmuttenmaer: “Far-infrared dielectric properties of polar liquids probed by terahertz pulse spectroscopy femtosecond”, J. Phys. Chem.100 (1996) pp. 103731037910.1021/jp960141gSearch in Google Scholar

22 F.Rutz, “Terahertz time domain spectroscopy: non-destructive testing of polymers and composite materials”, PhD thesis, Technische Universität Braunschweig (2007)Search in Google Scholar

23 A.Kupsch, J.Beckmann, U.Ewert, M.P.Hentschel, A.Lange: Terahertz-Wellen: Radiographie ohne Strahlengefährdung, MP Materials Testing50 (2008), S. 341348Search in Google Scholar

Published Online: 2013-05-26
Published in Print: 2012-06-01

© 2012, Carl Hanser Verlag, München

Downloaded on 9.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.110351/html
Scroll to top button