Home Determination of Elastic Plastic Fracture Toughness Parameters for a Compact Tension Specimen Using the Finite Element Method
Article
Licensed
Unlicensed Requires Authentication

Determination of Elastic Plastic Fracture Toughness Parameters for a Compact Tension Specimen Using the Finite Element Method

  • Uğur Özdemir and Çinar Yeni
Published/Copyright: May 26, 2013
Become an author with De Gruyter Brill

Abstract

In this study, elastic-plastic fracture toughness of an aluminum alloy is investigated. J-integral was calculated using the finite element software and formulation. Crack tip opening displacement (CTOD) is determined by using the plastic hinge model (δph) and direct measurement (δ5). J-Δ a and CTOD-Δ a resistance curves are constructed and compared with those obtained from formulation and those generated from test data, respectively. Good agreement has been obtained between the test results, the formulation and the results of the finite element analysis. The relationship between δph and δ5 is nonlinear and as CTOD increases δ5 becomes larger than δph. The relationship between J-integral and CTOD is found to be linear for both δph and δ5. It has been seen that the proportionality constant dn considerably depends on the method of calculation of CTOD.

Kurzfassung

In der diesem Beitrag zugrunde liegenden Studie wurde das bruchmechanische Verhalten einer Aluminiumlegierung untersucht. Hierzu wurde das J-Integral unter Verwendung einer Finite Elemente Software mit der entsprechenden Formulierung bestimmt. Der CTOD-Wert wurde mittels des plastischen Hinge-Modells (δ ph) sowie anhand direkter Messung (δ5) ermittelt. Die J-Δa und CTOD-Δa Widerstandkurven wurden entwickelt sowie jeweils mit den formulierten und mit denen aus Testdaten generierten verglichen. Es konnte eine gute Übereinstimmung zwischen den Testergebnissen, der Formulierung und den Ergebnissen der Finite Elemente Analysen erzielt werden. Das Verhältnis zwischen δph und δ5 ist nichtlinear und wenn der CTOD-Wert ansteigt, wird δ5 größer als δph. Das Verhältnis zwischen dem J-Integral und dem CTOD-Wert war sowohl für δph als auch für δ5 linear. Es konnte festgestellt werden, dass die Proportionalitätskonstante dn bemerkenswert von dem Kalkulationsverfahren des CTOD-Wertes abhängt.


Uğur Özdemir studied Mechanical Engineering at the Mustafa Kemal University, Turkey, in 2001. He has carried out the experimental work of him M. Sc. thesis at GKSS Research Center, Germany, in diffusion bonding of TiAl alloys and earned his M. Sc. from the Mustafa Kemal University, in 2003. He is doing Ph.D in elastic-plastic fracture mechanics of laser welded materials at Dokuz Eylül University, Turkey.

Çinar Yeni was born in 1967. She has carried out the experimental work of her M. Sc. and Ph. D. theses at Helmholtz-Zentrum Geesthacht (formerly named as GKSS Research Center), Germany, in fatigue and elastic-plastic fracture mechanics subjects and also participated in projects on noval welding methods during her post-doc studies. She is currently working as an associate professor at Dokuz Eylül University, Turkey. Her main areas of interest are fatigue and fracture of welded materials, namely laser and friction stir welding.


References

1 A. L.Lafly, D.Allehaux, F.Marie, C.Dalle, H.Döker: Impact of FSW Techniques, Proc of the 58th Annual Assembly Conference of the International Institute of Welding (IIW), Prague (2005)Search in Google Scholar

2 A.Asserin-Lebert, J.Besson, A. F.Geurgues: Fracture of 6056 aluminum sheet materials: effect of specimen thickness and hardening behaivour on strain localization and toughness, Mat. Sci. Eng. A395 (2005), pp. 18619410.1016/j.msea.2004.12.018Search in Google Scholar

3 U.Çevik, U.Özdemir, Ç.Yeni, M.Koçak: Investigation of laser beam welded 6056 aluminium alloys mechanical properties and fracture behaviour, Proc. of the XVI. National Congress of Mechanics, Turkey (2009), pp. 433441Search in Google Scholar

4 P.Nègre, D.Steglich, W.Brocks, M.Koçak: Numerical simulation of crack extension in aluminium welds, Comp. Mater. Sci.28 (2003), pp. 72373110.1016/j.commatsci.2003.08.026Search in Google Scholar

5 J.Ehrström, T.Warner: Metallurgical design of alloys for aerospace structures, Mater. Sci. Forum5 (2000), pp. 331337Search in Google Scholar

6 J.Faleskog, X.Gao, C. F.Shih: Cell model for nonlinear fracture mechanics-I micromechanics calibration, Int. J. Fract.89 (1998), pp. 33537310.1023/A:1007421420901Search in Google Scholar

7 R.Braun: Nd:YAG laser butt welding of AA6013 using silicon and magnesium containing filler powders, Mat. Sci. Eng. A426 (2006), pp. 25026210.1016/j.msea.2006.04.033Search in Google Scholar

8 P.Nègre, D.Steglich, W.Brocks: Crack extension at an interface: prediction of fracture toughness and simulation of crack path deviation, Int. J. Fracture134 (2005), pp. 20922910.1007/s10704-005-0523-8Search in Google Scholar

9 Y.Huang, J.Chen, G.Liu, YangH.: A new method of crack tip opening displacement determined based on maximum crack opening displacement, Eng. Fract. Mech.78 (2011), pp. 1441145110.1016/j.engfracmech.2011.01.008Search in Google Scholar

10 U.Mühlich, J. R.Donoso, J. D.Landes: A J-integral estimation method for C(T) specimens using the common format equation, Int. J. Fracture133 (2005), pp. 37138810.1007/s10704-005-5825-3Search in Google Scholar

11 N.Gubeljak, M. D.Chapetti, J.Predan, J. D.Landes: CTOD-R curve construction from surface displacement measurements, Eng. Fract. Mech.78 (2011), pp. 2286229710.1016/j.engfracmech.2011.05.002Search in Google Scholar

12 Z.Taş, A.Polat: Determination of the fracture toughness pipe steels using J-integral method, J. of CB Soma Vocational School of Tech. Sci.1 (2007), pp. 7Search in Google Scholar

13 S. K.Kudari; K. G.Kodancha: On the relationship between J-Integral and CTOD for CT and SENB specimens, Frattura ed Integrita Strutturale6, (2008), pp. 36Search in Google Scholar

14 G. P.Nikishkov; J.Heerens; K.-H.Schwalbe: Transformation of CTOD δ5 to CTOD δ5BS and J-integral for 3PB- and CT-specimens, Eng. Fract. Mech.63 (1999), pp. 57358910.1016/S0013-7944(99)00039-9Search in Google Scholar

15 G. X.Shan, O.Kolednik, F. D.Fischer, H. P.Stüwe: A 2D model for numerical investigations of stable crack growth in thick smooth fracture mechanics specimens, 45 (1993), pp. 99106Search in Google Scholar

16 Y.Shi, S.Sun, H.Murakawa, Y.Ueda: Finite element analysis on relationships between the J-integral and CTOD for stationary cracks in welded tensile specimens, Int. J. Pres. Ves. Pip.75 (1998), pp. 19720210.1016/S0308-0161(98)00002-7Search in Google Scholar

17 T. L.Anderson: Fracture Mechanics: Fundamentals and Applications, 2nd Edition, CRC Press, Texas (1991)Search in Google Scholar

18 B.Omidvar, M. P.Wnuk, M.Choroszynski: Relationship between the CTOD and the J-integral for stationary and growing cracks, closed-form solutions, Int. J. Fracture87 (1997), pp. 33134310.1023/A:1007498909766Search in Google Scholar

19 R.Knockaert, I.Doghri, Y.Marchal, T.Pardoen, F.Delannay: Experimental and numerical investigation of fracture in double-edge notched steel plates, Int. J. Fract.81 (1996), pp. 38339910.1007/BF00012430Search in Google Scholar

20 G. X.Shan, O.Kolednik, H. P.Stüwe, F. D.Fischer: A substitution method for 3D elastic-plastic FE analyses of fracture mechanics specimens, Eng. Fract. Mech.41 (1992), pp. 62563310.1016/0013-7944(92)90149-9Search in Google Scholar

21 Abaqus Technology Brief, TB-04-FMCAE-1, Fracture mechanics study of a compact tension specimen using Abaqus/CAE (2007)Search in Google Scholar

22 C.Yang, W.Sun, J. S.Tomblin, S. S.Smeltzer: A semi-analytical method for determining the strain energy release rate of cracks in adhesively-bonded single-lap composite joints, J. Compos. Mater.41 (2007), pp. 1579160210.1177/0021998306069872Search in Google Scholar

23 C.Yang, A.Chadegani, J. S.Tomblin: Strain energy release rate determination of prescribed cracks in adhesively-bonded single-lap composite joints with thick bondlines, Compos. Part B-Eng.39 (2008), pp. 86387310.1016/j.compositesb.2007.10.001Search in Google Scholar

24 W.Brocks, I.Scheider: Numerical aspects of the path-dependence of the J-Integral in incremental plasticity-how to calculate reliable J-values in FE analyses, GKSS Forschungs-zentrum Internal Report-GKSS/WMS/01/08 (2001).Search in Google Scholar

25 ASTM E1290-99: Standard test method for crack tip opening displacement (CTOD) fractures toughness measurementSearch in Google Scholar

26 T. L.Panontin, A.Makino, J. F.Williams: Crack tip opening displacement estimation formulae for C(T) specimens, Eng. Fract. Mech.67 (2000), pp. 29330110.1016/S0013-7944(00)00048-5Search in Google Scholar

Published Online: 2013-05-26
Published in Print: 2012-06-01

© 2012, Carl Hanser Verlag, München

Downloaded on 9.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.110345/html
Scroll to top button