Home Effects of Welding Parameters on the Mechanical Properties of Inert Gas Welded 6063 Aluminum Alloys
Article
Licensed
Unlicensed Requires Authentication

Effects of Welding Parameters on the Mechanical Properties of Inert Gas Welded 6063 Aluminum Alloys

  • Taner Ertan , Rukiye Ertan and Agah Uguz
Published/Copyright: May 26, 2013
Become an author with De Gruyter Brill

Abstract

The influence of welding parameters, namely welding current and gas flow rate, on the mechanical properties of Gas Tungsten Arc Welding (GTAW) and Shielded Metal Arc Welding (SMAW) welded 6063 Aluminum alloy (AA 6063) has been investigated. In order to study the effect of the welding current and gas flow rate, microstructural examination, hardness measurements and room temperature tensile tests have been carried out. The experimental results show that the mechanical properties of GTAW welded joints have better mechanical properties than those of SMAW welded joints. Increasing the welding current appeared to have a beneficial effect on the mechanical properties. However, either increasing or decreasing the gas flow rate resulted in a decrease of hardness and tensile strength. It was also found that, the highest strength was obtained in GTAW welded samples at 220 A and 15 l/min gas flow rate.

Kurzfassung

Der Einfluss der Schweißparameter, hier der Stromstärke und des Schutzgasdurchflusses, auf die mechanischen Eigenschaften einer Wolfram Inert Gas (WIG) und Metall Inert Gas (MOG) geschweißten Aluminiumlegierung AA 6063 wurde in der diesem Beitrag zugrunde liegenden Studie untersucht. Um die Wirkung der Stromstärke und des Schutzgasdurchflusses zu ermitteln, wurden mikrostrukturelle Untersuchungen, Härtemessungen und Zugversuche bei Raumtemperatur durchgeführt. Die experimentellen Ergebnisse zeigen, dass die mechanischen Eigenschaften der WIG-Schweißverbindungen besser sind als die der MIG-geschweißten Nähte. Sowohl eine Erhöhung, als auch ein Erniedrigung der Gasdurchflussrate ergaben eine Verringerung der Härte und der Zugefestigkeit. Es wurde auch herausgefunden, dass sich die höchste Festigkeit in den mit 220 A und 15 l/min Schutzgasdurchfluß geschweißten Proben einstellt.


Taner Ertan, born in 1979, finished his Master degree at the Department of Mechanical Engineering, Uludağ University, Turkey. He is working for the MAKO Corporation, Turkey, as a Lean Production Expert. He is interested in welding methods, materials science, experimental design and lean production systems.

Rukiye Ertan, born in 1979, finished her PhD degree at the Department of Mechanical Engineering, Uludağ University, Turkey. She is interested in welding methods, materials sciences, experimental design, and manufacturing techniques.

Agah Uğuz, born in 1962, is a Professor at the Mechanical Engineering Department at Uludağ University, Turkey. He received his PhD degree at Oxford University, Department of Materials, UK in 1990. He is the General Manager of Ulutek Science Park in Bursa, Turkey. He is currently working on foam metals, and medical applications of nanomaterials.


References

1 F. M.Mazzolani: aluminum alloy structures, 2nd Ed., Chapmann & Hall, London (1995)10.1201/9781482267198Search in Google Scholar

2 N.R.Mandal: Aluminium Welding, Woodhead Publishing, Cambridge, England (2001)Search in Google Scholar

3 G.Mathers: The Welding of aluminum and its Alloys, Woodhead Publishing, Camridge, UK (2002)10.1201/9781439823224Search in Google Scholar

4 R. P.Matrukanitz: Selection and weldability of heat-treatable aluminum alloys, ASM Handbook-Welding, Brazing and Soldering6 (1990), pp. 17821836Search in Google Scholar

5 N. S.Shanmuga, N.Murugan: Tensile behavior of dissimilar friction stir welded joints of aluminium alloys, Materials and Design31 (2010), pp. 4184419310.1016/j.matdes.2010.04.035Search in Google Scholar

6 R. A.Owen, R. V.Preston, P. J.Withers, H. R.Shercliff, P. J.Webster: Neutron and synchrotron measurements of residual strain in GTAW welded aluminum alloy 2024, Materials Science and Engineering A346 (2003), pp. 59167.10.1016/S0921-5093(02)00547-6Search in Google Scholar

7 L.Han, M.Thornton, D.Boomer, M.Shergold: A correlation study of mechanical strength of resistance spot welding of AA5754 aluminium alloy, Journal of Materials Processing Tech­nology211(2011), pp. 51352110.1016/j.jmatprotec.2010.11.004Search in Google Scholar

8 M. N.Ahmad Fauzi, M. B.Uday; H.Zuhailawati, A. B.Ismail: Microstructure and mechanical properties of alumina-6061 aluminum alloy joined by friction welding, Materials and Design31 (2010), pp. 67067610.1016/j.matdes.2009.08.019Search in Google Scholar

9 E.Taban, J. E.Gould, J. C.Lippold: Dissimilar friction welding of 6061-T6 aluminum and AISI 1018 steel: Properties and microstructural characterization, Materials and Design31 (2010), pp. 2305231110.1016/j.matdes.2009.12.010Search in Google Scholar

10 T. S.Kumar, V.Balasubramanian, M. Y.Sanavullah: Influences of pulsed current tungsten inert gas welding parameters on the tensile properties of AA 6061 aluminum alloy, Materials and Design28 (2007), pp. 2080209210.1016/j.matdes.2006.05.027Search in Google Scholar

11 S. C.Juang, Y. S.Tarng: Process parameter selection for optimizing the weld pool geometry in the tungsten inert gas welding of stainless steel, J. Mater. Process. Techn.122 (2002), pp. 333710.1016/S0924-0136(02)00021-3Search in Google Scholar

12 S.-B.Chen, J.Wu: Intelligentized Methodology for Arc Welding Dynamical Processes: Visual Information Acquiring, Knowledge Modeling and Intelligent Control, Springer-Verlag, Berlin (2009)Search in Google Scholar

13 R.Finch: Performance Welding, Motorbooks International, St. Paul, USA (1997)Search in Google Scholar

14 P. J.Modenesi, E. R.Apolinário, I. M.Pereira: GTAW welding with single-component fluxes, J. Mater. Process. Techn.99 (2000), pp. 26026510.1016/S0924-0136(99)00435-5Search in Google Scholar

15 M. H.Ogle, S.J.Maddox, P. L.Threadgill: Joints in aluminum, Proc. of the 7th International Conference Inalco, Woodhead Publishing, Camridge, UK (1999)Search in Google Scholar

16 P. P.Lean, L.Gil, A.Ureña: Dissimilar welds between unreinforced AA6082 and AA6092/SiC/25p composite by pulsed-MIG arc welding using unreinforced filler alloys (Al–5Mg and Al–5Si), Journal of Materials Processing Technology143–144 (2003), pp. 84685010.1016/S0924-0136(03)00331-5Search in Google Scholar

17 R.Kaçar; K.Kökemli: Effect of controlled atmosphere on the SMAW-mag arc weldment properties, Materials and Design26 (2005), pp. 50851610.1016/j.matdes.2004.07.027Search in Google Scholar

18 Y.Bai, H.Gao, L.Wu, Z.Ma; N.Cao: Influence of plasma-MIG welding parameters on aluminum weld porosity by orthogonal test, Transactions of Nonferrous Metals Society of China20 (2010), pp. 1392139610.1016/S1003-6326(09)60310-1Search in Google Scholar

19 C. L.Mendes da Silva, A.Scotti: The influence of double pulse on porosity formation in aluminum GMAW, Journal of Materials Processing Technology171 (2006), pp. 36637210.1016/j.jmatprotec.2005.07.008Search in Google Scholar

20 A.Durgutlu: Experimental investigation of the effect of hydrogen in argon as a shielding gas on GTAW welding of austenitic stainless steel, Materials and Design25 (2004), pp. 192310.1016/j.matdes.2003.07.004Search in Google Scholar

21 A.Durgutlu, B.Gulenc, K.Tulbentci: The effect of welding speed on the microstructure and penetration in arc welding, Turkish Journal of Engineering of Environmental Science23 (1999), pp. 251259Search in Google Scholar

Published Online: 2013-05-26
Published in Print: 2012-01-01

© 2012, Carl Hanser Verlag, München

Downloaded on 14.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.110292/html
Scroll to top button