Home Determination of nitrites and nitrates in drinking water using capillary electrophoresis
Article
Licensed
Unlicensed Requires Authentication

Determination of nitrites and nitrates in drinking water using capillary electrophoresis

  • Eva Martínková EMAIL logo , Tomáš Křžek and Pavel Coufal
Published/Copyright: April 15, 2014
Become an author with De Gruyter Brill

Abstract

This work was concerned with developing an electrophoretic method for rapid determination of nitrites and nitrates in drinking water. The background electrolyte was Tris-HCl buffer with an addition of cetyltrimethylammonium chloride to reverse the electro-osmotic flow. Online preconcentration of samples using the field-amplified sample stacking method provided detection limits of 0.003 mg L−1 (i.e. 65 nM) for nitrites and 0.010 mg L−1 (i.e. 160 nM) for nitrates, which are sufficiently low for quality control of drinking water. The method was tested in a concentration range corresponding to real drinking water samples and the differentiation between nitrites and nitrates was sufficient for simultaneous determination of nitrites at their concentrations of the order of tenths of mg L−1 and nitrates at their concentrations of the order of units to tens of mg L−1. A number of authors have neglected this important aspect when concentrating only on achieving the lowest possible detection limits. Separation of the two analytes and iodate as an internal standard was achieved in only three minutes. Total analysis time including preconditioning was eight minutes.

[1] Breadmore, M. C., & Quirino, J. P. (2008). 100 000-fold concentration of anions in capillary zone electrophoresis using electroosmotic flow controlled counterflow isotachophoretic stacking under filed amplified conditions. Analytical Chemistry, 80, 6373–6381. DOI: 10.1021/ac8007835. http://dx.doi.org/10.1021/ac800783510.1021/ac8007835Search in Google Scholar

[2] Bodor, R., Madajová, V., Kaniansky, D., Masár, M., Jöhnck, M., & Stanislawski, B. (2001). Isotachophoresis and isotachophoresis — zone electrophoresis separations of inorganic anions present in water samples on a planar chip with column-coupling separation channels and conductivity detection. Journal of Chromatography A, 916, 155–165. DOI: 10.1016/s0021-9673(00)01080-3. http://dx.doi.org/10.1016/S0021-9673(00)01080-310.1016/S0021-9673(00)01080-3Search in Google Scholar

[3] Boudko, D. Y., Cooper, B. Y., Harvey, W. R., & Moroz, L. L. (2002). High-resolution microanalysis of nitrite and nitrate in neuronal tissues by capillary electrophoresis with conductivity detection. Journal of Chromatography B, 774, 97–104. DOI: 10.1016/s1570-0232(02)00219-2. http://dx.doi.org/10.1016/S1570-0232(02)00219-210.1016/S1570-0232(02)00219-2Search in Google Scholar

[4] Fukushi, K., Tada, K., Takeda, S., Wakida, S., Yamane, M., Higashi, K., & Hiiro, K. (1999). Simultaneous determination of nitrate and nitrite ions in seawater by capillary zone electrophoresis using artificial seawater as the carrier solution. Journal of Chromatography A, 838, 303–311. DOI: 10.1016/s0021-9673 (99)00214-9. http://dx.doi.org/10.1016/S0021-9673(99)00214-910.1016/S0021-9673(99)00214-9Search in Google Scholar

[5] Fukushi, K., Nakayamaa, Y., & Tsujimoto, J. (2003). Highly sensitive capillary zone electrophoresis with artificial seawater as the background electrolyte and transient isotachophoresis as the on-line concentration procedure for simultaneous determination of nitrite and nitrate in seawater. Journal of Chromatography A, 1005, 197–205. DOI: 10.1016/s0021-9673(03)00880-x. http://dx.doi.org/10.1016/S0021-9673(03)00880-X10.1016/S0021-9673(03)00880-XSearch in Google Scholar

[6] Gao, L., Barber-Singh, J., Kottegoda, S., Wirtshafter, D., & Shippy, S. A. (2004). Determination of nitrate and nitrite in rat brain perfusates by capillary electrophoresis. Electrophoresis, 25, 1264–1269. DOI: 10.1002/elps.200305840. http://dx.doi.org/10.1002/elps.20030584010.1002/elps.200305840Search in Google Scholar

[7] Guan, F. Y., Wu, H. F., & Luo, Y. (1996). Sensitive and selective method for direct determination of nitrite and nitrate by high-performance capillary electrophoresis. Journal of Chromatography A, 719, 427–433. DOI: 10.1016/0021-9673(95)00735-0. http://dx.doi.org/10.1016/0021-9673(95)00735-010.1016/0021-9673(95)00735-0Search in Google Scholar

[8] Kaniansky, D., Zelenská, V., & Baluchová, D. (1996). Capillary zone electrophoresis of inorganic anions with conductivity detection. Electrophoresis, 17, 1890–1897. DOI: 10.1002/elps.1150171214. http://dx.doi.org/10.1002/elps.115017121410.1002/elps.1150171214Search in Google Scholar PubMed

[9] Kikura-Hanajiri, R., Martin, R. S., & Lunte, S. M. (2002). Indirect measurement of nitric oxide production by monitoring nitrate and nitrite using microchip electrophoresis with electrochemical detection. Analytical Chemistry, 74, 6370–6377. DOI: 10.1021/ac0204000. http://dx.doi.org/10.1021/ac020400010.1021/ac0204000Search in Google Scholar PubMed

[10] Kubáň, P., Nguyen, H. T. A., Macka, M., Haddad, P. R., & Hauser, P. C. (2007). New fully portable instrument for the versatile determination of cations and anions by capillary electrophoresis with contactless conductivity detection. Electroanalysis, 19, 2059–2065. DOI: 10.1002/elan.200703908. http://dx.doi.org/10.1002/elan.20070390810.1002/elan.200703908Search in Google Scholar

[11] Mahabadi, K. A., Rodriguez, I., Lim, C. Y., Maurza, D. K., Hauser, P. C., & de Rooij, N. F. (2010). Capacitively coupled contactless conductivity detection with dual top-bottom cell configuration for microchip electrophoresis. Electrophoresis, 31, 1063–1070. DOI: 10.1002/elps.200900578. 10.1002/elps.200900578Search in Google Scholar

[12] Martínez, V., García, N., Antigüedad, I., Alonso, R. M., & Jiménez, R. M. (2004). Capillary electrophoresis as a useful tool for the analysis of chemical tracers applied to hydrological systems. Journal of Chromatography A, 1032, 237–242. DOI: 10.1016/j.chroma.2003.11.015. http://dx.doi.org/10.1016/j.chroma.2003.11.01510.1016/j.chroma.2003.11.015Search in Google Scholar

[13] Mikkers, F. E. P., Everaerts, F. M., & Verheggen, T. P. E. M. (1979). High-performance zone electrophoresis. Journal of Chromatography, 169, 11–20. DOI: 10.1016/0021-9673(75)85029-1. http://dx.doi.org/10.1016/0021-9673(75)85029-110.1016/0021-9673(75)85029-1Search in Google Scholar

[14] Miyado, T., Tanaka, Y., Nagai, H., Takeda, S., Saito, K., Fukushi, K., Yoshida, Y., Wakida, S., & Niki, E. (2004). Simultaneous determination of nitrate and nitrite in biological fluids by capillary electrophoresis and preliminary study on their determination by microchip capillary electrophoresis. Journal of Chromatography A, 1051, 185–191. DOI: 10.1016/j.chroma.2004.08.037. http://dx.doi.org/10.1016/j.chroma.2004.08.03710.1016/j.chroma.2004.08.037Search in Google Scholar

[15] Okemgbo, A. A., Hill, H. H., Siems, W. F., & Metcalf, S. G. (1999). Reverse polarity capillary zone electrophoretic analysis of nitrate and nitrite in natural water samples. Analytical Chemistry, 71, 2725–2731. DOI: 20.1021/ac990198+. http://dx.doi.org/10.1021/ac990198+10.1021/ac990198+Search in Google Scholar

[16] Osbourn, D. M., Weiss, D. J., & Lunte, C. E. (2000). Online preconcentration methods for capillary electrophoresis. Electrophoresis, 21, 2768–2779. DOI: 10.1002/1522-2683(20000801)21:14〈2768::aid-elps2768〉3.0.co;2-p. http://dx.doi.org/10.1002/1522-2683(20000801)21:14<2768::AID-ELPS2768>3.0.CO;2-P10.1002/1522-2683(20000801)21:14<2768::AID-ELPS2768>3.0.CO;2-PSearch in Google Scholar

[17] Öztekin, N., Nutku, M. S., & Erim, F. B. (2002). Simultaneous determination of nitrite and nitrate in meat products and vegetables by capillary electrophoresis. Food Chemistry, 76, 103–106. DOI: 10.1016/s0308-8146 (01)00287-4. http://dx.doi.org/10.1016/S0308-8146(01)00287-410.1016/S0308-8146(01)00287-4Search in Google Scholar

[18] Padarauskas, A., Paliulionyte, V., & Pranaityte, B. (2001). Single-run capillary electrophoretic determination of inorganic nitrogen species in rainwater. Analytical Chemistry, 73, 267–271. DOI: 10.1021/ac000674s. http://dx.doi.org/10.1021/ac000674s10.1021/ac000674sSearch in Google Scholar

[19] Röder, A., & Bächmann, K. (1995). Simultaneous determination of organic and inorganic anions in the sub-μmol/l range in rain water by capillary zone electrophoresis. Journal of Chromatography A, 689, 305–311. DOI: 10.1016/0021-9673(94)00895-g. http://dx.doi.org/10.1016/0021-9673(94)00895-G10.1016/0021-9673(94)00895-GSearch in Google Scholar

[20] Szökő, E., Tábi, T., Halász, A. S., Pálfi, M., & Magyar, K. (2004). High sensitivity analysis of nitrite and nitrate in biological samples by capillary zone electrophoresis with transient isotachophoretic sample stacking. Journal of Chromatography A, 1051, 177–183. DOI: 10.1016/j.chroma.2004.07.037. http://dx.doi.org/10.1016/j.chroma.2004.07.03710.1016/j.chroma.2004.07.037Search in Google Scholar

[21] Tanaka, Y., Naruishi, N., Fukuya, H., Sakata, J., Saito, K., & Wakida, S. (2004). Simultaneous determination of nitrite, nitrate, thiocyanate and uric acid in human saliva by capillary zone electrophoresis and its application to the study of daily variations. Journal of Chromatography A, 1051, 193–197. DOI: 10.1016/j.chroma.2004.06.053. http://dx.doi.org/10.1016/j.chroma.2004.06.05310.1016/j.chroma.2004.06.053Search in Google Scholar

[22] Troška, P., Chudoba, R., Danč, L., Bodor, R., Horčičiak, M., Tesařovár, M. (2013). Determination of nitrite and nitrate in cerebrospinal fluid by microchip electrophoresis with microsolid phase extraction pre-treatment. Journal of Chromatography B, 930, 41–47. DOI: 10.1016/j.jchromb.2013.04.042. http://dx.doi.org/10.1016/j.jchromb.2013.04.04210.1016/j.jchromb.2013.04.042Search in Google Scholar PubMed

[23] Tsuda, T. (1987). Modification of electroosmotic flow with cetyltrimethylammonium bromide in capillary zone electrophoresis. Journal of High Resolution Chromatography, 10, 622–624. DOI: 10.1002/jhrc.1240101109. http://dx.doi.org/10.1002/jhrc.124010110910.1002/jhrc.1240101109Search in Google Scholar

[24] Vázquez, M., Frankenfeld, C., Tomazelli Coltro, W. K., Carrilho, E., Diamond, D., & Lunte, S. M. (2010). Dual contactless conductivity and amperometric detection on hybrid PDMS/glass electrophoresis microchips. Analyst, 135, 96–103. DOI: 10.1039/b908985c. http://dx.doi.org/10.1039/b908985c10.1039/B908985CSearch in Google Scholar

[25] Wang, X., Adams, E., & Van Shepdael, A. (2012). A fast and sensitive method for the determination of nitrite in human plasma by capillary electrophoresis with fluorescence detection. Talanta, 97, 142–144. DOI: 10.1016/j.talanta.2012.04.008. http://dx.doi.org/10.1016/j.talanta.2012.04.00810.1016/j.talanta.2012.04.008Search in Google Scholar PubMed

[26] Xu, Z. Q., Doi, T., Timerbaev, A. R., & Hirokawa, T. (2008). Sensitive determination of anions in saliva using capillary electrophoresis after transient isotachophoretic preconcentration. Talanta, 77, 278–281. DOI: 10.1016/j.talanta.2008.06.017. http://dx.doi.org/10.1016/j.talanta.2008.06.01710.1016/j.talanta.2008.06.017Search in Google Scholar PubMed

[27] Znaleziona, J., Petr, J., Knob, R., Maier, V., & Ševčík, J. (2008). Dynamic coating agents in CE. Chromatographia, 67, S5–S12. DOI: 10.1365/s10337-007-0509-y. http://dx.doi.org/10.1365/s10337-007-0509-y10.1365/s10337-007-0509-ySearch in Google Scholar

Published Online: 2014-4-15
Published in Print: 2014-8-1

© 2014 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Recent advances in application of liquid-based micro-extraction: A review
  2. Determination of nitrites and nitrates in drinking water using capillary electrophoresis
  3. Comparison of digestion methods for determination of total phosphorus in river sediments
  4. Interdisciplinary study on pottery experimentally impregnated with wine
  5. Improvement in γ-decalactone production by Yarrowia sp. after genome shuffling
  6. Development of an effective extraction process for coenzyme Q10 from Artemia
  7. Effect of anions on the structure and catalytic properties of a La-doped Cu-Mn catalyst in the water-gas shift reaction
  8. Effect of apple pomace powder addition on farinographic properties of wheat dough and biscuits quality
  9. Influence of caffeine and temperature on corrosion-resistance of CoCrMo alloy
  10. Cetyltrimethylammonium bromide- and ethylene glycol-assisted preparation of mono-dispersed indium oxide nanoparticles using hydrothermal method
  11. Sol-gel synthesis, characterisation, and photocatalytic activity of porous spinel Co3O4 nanosheets
  12. Solvent-free synthesis of β-enamino ketones and esters catalysed by recyclable iron(III) triflate
  13. Potassium phthalimide-catalysed one-pot multi-component reaction for efficient synthesis of amino-benzochromenes in aqueous media
  14. Organocatalytic SOMO reactions of copper(I)-acetylide and alkylindium compounds with aldehydes
  15. Molecular modelling and quantitative structure-activity relationship studies of anatoxin-a and epibatidine derivatives with affinity to rodent nAChR receptors
  16. Efficient one-pot synthesis of 2-hydroxyethyl per-O-acetyl glycosides
  17. Properties of singlet- and triplet-excited states of hemicyanine dyes
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-014-0548-4/html
Scroll to top button