Home Controllable one-step synthesis of ZnO nanostructures using molybdophosphoric acid
Article
Licensed
Unlicensed Requires Authentication

Controllable one-step synthesis of ZnO nanostructures using molybdophosphoric acid

  • Hamed Rashidi EMAIL logo , Ali Ahmadpour , Fatemeh Bamoharram , Seyed Zebarjad , Majid Heravi and Faranak Tayari
Published/Copyright: December 20, 2013
Become an author with De Gruyter Brill

Abstract

ZnO nanostructures were synthesised in a hydrothermal reaction of zinc acetate in the presence of molybdophosphoric acid (H3[PMo12O40]) as well as its vanadium-substituted acid (H4[PMo11VO40]) at various times, temperatures, and concentrations. The ZnO nanostructures were characterised by X-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy. The results demonstrated that the synthesised products are crystalline with a zincite hexagonal phase. Various ZnO nanostructures, such as nanoparticles, microrods, and nanosheets, were produced by changing the experimental conditions. The photocatalytic degradation of methyl orange was also investigated using the ZnO nanoparticles thus prepared. These particles exhibited high performance in the photocatalytic degradation of MO and almost 100 % decolourisation occurred within only 20 min.

[1] Ang, Y., Li, Z., Xu, S., Han, D., & Lu, D. (2013). Optical properties and photocatalytic activities of spherical ZnO and flower-like ZnO structures synthesized by facile hydrothermal method. Journal of Alloys and Compounds, 575, 359–363. DOI: 10.1016/j.jallcom.2013.05.183. http://dx.doi.org/10.1016/j.jallcom.2013.05.18310.1016/j.jallcom.2013.05.183Search in Google Scholar

[2] Bamoharram, F. F. (2011). Preparation of ZnO nanorods in the presence of nano preyssler as agreen and eco-friendly polyoxometalate and its photocatalytic activity in the photodegradation of methyl orange. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 41, 571–576. DOI: 10.1080/15533174.2011.568443. 10.1080/15533174.2011.568443Search in Google Scholar

[3] Djurišić, A. B., & Leung, Y. H. (2006). Optical properties of ZnO nanostructures. Small, 2, 944–961. DOI: 10.1002/smll.200600134. http://dx.doi.org/10.1002/smll.20060013410.1002/smll.200600134Search in Google Scholar PubMed

[4] Djurišić, A. B., Ng, A. M. C., & Chen, X. Y. (2010). ZnO nanostructures for optoelectronics: Material properties and device applications. Progress in Quantum Electronics, 34, 191–259. DOI: 10.1016/j.pquantelec.2010.04.001. http://dx.doi.org/10.1016/j.pquantelec.2010.04.00110.1016/j.pquantelec.2010.04.001Search in Google Scholar

[5] Ekthammathat, N., Thongtem, T., Phuruangrat, A., & Thongtem, S. (2013). Characterization of ZnO flowers of hexagonal prisms with planar and hexagonal pyramid tips grown on Zn substrates by a hydrothermal process. Superlattices and Microstructures, 53, 195–203. DOI: 10.1016/j.spmi.2012.10.013. http://dx.doi.org/10.1016/j.spmi.2012.10.01310.1016/j.spmi.2012.10.013Search in Google Scholar

[6] Eskandari, M., Ahmadi, V., & Ahmadi, S. H. (2009). Low temperature synthesis of ZnO nanorods by using PVP and their characterization. Physica B: Condensed Matter, 404, 1924–1928. DOI: 10.1016/j.physb.2009.03.024. http://dx.doi.org/10.1016/j.physb.2009.03.02410.1016/j.physb.2009.03.024Search in Google Scholar

[7] Fang, Y. L., Li, Z. Y., Xu, S., Han, D. D., & Lu, D. Y. (2013). Optical properties and photocatalytic activities of spherical ZnO and flower-like ZnO structures synthesized by facile hydrothermal method. Journal of Alloys and Compounds, 575, 359–363. DOI: 10.1016/j.jallcom.2013.05.183. http://dx.doi.org/10.1016/j.jallcom.2013.05.18310.1016/j.jallcom.2013.05.183Search in Google Scholar

[8] Feldmann, C. (2003). Polyol-mediated synthesis of nanoscale functional materials. Advanced Functional Materials, 13, 101–107. DOI: 10.1002/adfm.200390014. http://dx.doi.org/10.1002/adfm.20039001410.1002/adfm.200390014Search in Google Scholar

[9] Hamminga, G. M., Mul, G., & Moulijn, J. A. (2004). Real-time in situ ATR-FTIR analysis of the liquid phase hydrogenation of γ-butyrolactone over Cu-ZnO catalysts: A mechanistic study by varying lactone ring size. Chemical Engineering Science, 59, 5479–5485. DOI: 10.1016/j.ces.2004.07.087. http://dx.doi.org/10.1016/j.ces.2004.07.08710.1016/j.ces.2004.07.087Search in Google Scholar

[10] Hong, R. Y., Ren, Z. Q., Ding, J. M., & Li, H. Z. (2005). Experimental investigation and particle dynamic simulation for synthesizing titania nanoparticles using diffusion flame. Chemical Engineering Journal, 108, 203–212. DOI: 10.1016/j.cej.2005.02.011. http://dx.doi.org/10.1016/j.cej.2005.02.01110.1016/j.cej.2005.02.011Search in Google Scholar

[11] Hong, R. Y., Pan, T. T., Qian, J. Z., & Li, H. Z. (2006). Synthesis and surface modification of ZnO nanoparticles. Chemical Engineering Journal, 119, 71–81. DOI: 10.1016/j.cej.2006.03.003. http://dx.doi.org/10.1016/j.cej.2006.03.00310.1016/j.cej.2006.03.003Search in Google Scholar

[12] Hu, X. L., Zhu, Y. J., & Wang, S. W. (2004). Sonochemical and microwave-assisted synthesis of linked single-crystalline ZnO rods. Materials Chemistry and Physics, 88, 421–426. DOI: 10.1016/j.matchemphys.2004.08.010. http://dx.doi.org/10.1016/j.matchemphys.2004.08.01010.1016/j.matchemphys.2004.08.010Search in Google Scholar

[13] Ju, M. L., Li, Q. Y., Gu, J. M., Xu, R., Li, Y. G., Wang, X. L., & Wang, E. (2010). Polyoxometalate-assisted electrochemical deposition of ZnO spindles in an ionic liquid. Materials Letters, 64, 643–645. DOI: 10.1016/j.matlet.2009.12.034. http://dx.doi.org/10.1016/j.matlet.2009.12.03410.1016/j.matlet.2009.12.034Search in Google Scholar

[14] Kartal, Ö. E., Erol, M., & Oğuz, H. (2001). Photocatalytic destruction of phenol by TiO2 powders. Chemical Engineering & Technology, 24, 645–649. DOI: 10.1002/1521-4125(200106)24:6〈645::aid-ceat645〉3.0.co;2-L. http://dx.doi.org/10.1002/1521-4125(200106)24:6<645::AID-CEAT645>3.0.CO;2-L10.1002/1521-4125(200106)24:6<645::AID-CEAT645>3.0.CO;2-LSearch in Google Scholar

[15] Kaur, J., Bansal, S., & Singhal, S. (2013). Photocatalytic degradation of methyl orange using ZnO nanopowders synthesized via thermal decomposition of oxalate precursor method. Physica B: Condensed Matter, 416, 33–38. DOI: 10.1016/j.physb.2013.02.005. http://dx.doi.org/10.1016/j.physb.2013.02.00510.1016/j.physb.2013.02.005Search in Google Scholar

[16] Keita, B., Liu, T., & Nadjo, L. (2009). Synthesis of remarkably stabilized metal nanostructures using polyoxometalates. Journal of Materials Chemistry, 19, 19–33. DOI: 10.1039/b813303d. http://dx.doi.org/10.1039/b813303d10.1039/B813303DSearch in Google Scholar

[17] Kim, J. H., Choi, W. C., Kim, H. Y., Kang, Y., & Park, Y. K. (2005). Preparation of mono-dispersed mixed metal oxide micro hollow spheres by homogeneous precipitation in a micro precipitator. Powder Technology, 153, 166–175. DOI: 10.1016/j.powtec.2005.03.004. http://dx.doi.org/10.1016/j.powtec.2005.03.00410.1016/j.powtec.2005.03.004Search in Google Scholar

[18] Kiomarsipour, N., & Shoja Razavi, R. (2013). Hydrothermal synthesis and optical property of scale- and spindle-like ZnO. Ceramics International, 39, 813–818. DOI: 10.1016/j. ceramint.2012.07.002. http://dx.doi.org/10.1016/j.ceramint.2012.07.00210.1016/j.ceramint.2012.07.002Search in Google Scholar

[19] Kitano, M., & Shiojiri, M. (1997). Bénard convection ZnO/resin lacquer coating — a new approach to electrostatic dissipative coating. Powder Technology, 93, 267–273. DOI: 10.1016/s0032-5910(97)03283-x. http://dx.doi.org/10.1016/S0032-5910(97)03283-X10.1016/S0032-5910(97)03283-XSearch in Google Scholar

[20] Koh, Y. W., Lin, M., Tan, C. K., Foo, Y. L., & Loh, K. P. (2004). Self-assembly and selected area growth of zinc oxide nanorods on any surface promoted by an aluminum precoat. Journal of Physical Chemistry B, 108, 11419–11425. DOI: 10.1021/jp049134f. 10.1021/jp049134fSearch in Google Scholar

[21] Kulesza, P. J., Chojak, M., Karnicka, K., Miecznikowski, K., Palys, B., Lewera, A., & Wieckowski, A. (2004). Network films composed of conducting polymer-linked and polyoxometalate-stabilized platinum nanoparticles. Chemistry of Materials, 16, 4128–4134. DOI: 10.1021/cm040010p. http://dx.doi.org/10.1021/cm040010p10.1021/cm040010pSearch in Google Scholar

[22] Li, Q. Y., Wang, E., Li, S. H., Wang, C. L., Tian, C. G., Sun, G. Y., Gu, J. M., & Xu, R. (2009). Template-free polyoxometalate-assisted synthesis for ZnO hollow spheres. Journal of Solid State Chemistry, 182, 1149–1155. DOI: 10.1016/j.jssc.2008.10.039. http://dx.doi.org/10.1016/j.jssc.2008.10.03910.1016/j.jssc.2008.10.039Search in Google Scholar

[23] Li, X. B., Dou, W., & Bao, N. Z. (2012). Hydrothermal synthesis of tubular ZnO materials. Materials Letters, 68, 140–142. DOI: 10.1016/j.matlet.2011.10.036. http://dx.doi.org/10.1016/j.matlet.2011.10.03610.1016/j.matlet.2011.10.036Search in Google Scholar

[24] Li, Z. Y., Fang, Y. L., Zhan, X. Q., & Xu, S. (2013). Facile preparation of squarylium dye sensitized TiO2 nanoparticles and their enhanced visible-light photocatalytic activity. Journal of Alloys and Compounds, 564, 138–142. DOI: 10.1016/j.jallcom.2013.03.002. http://dx.doi.org/10.1016/j.jallcom.2013.03.00210.1016/j.jallcom.2013.03.002Search in Google Scholar

[25] Mandal, S., Selvakannan, P. R., Pasricha, R., & Sastry, M. (2003). Keggin ions as UV-switchable reducing agents in the synthesis of Au core-Ag shell nanoparticles. Journal of the American Chemical Society, 125, 8440–8441. DOI: 10.1021/ja034972t. http://dx.doi.org/10.1021/ja034972t10.1021/ja034972tSearch in Google Scholar

[26] Mao, B. D., Kang, Z. H., Wang, E., Tian, C. U., Zhang, Z. M., Wang, C. L., Song, Y. L., & Li, M. Y. (2007). Template free fabrication of hollow hematite spheres via a one-pot polyoxometalate-assisted hydrolysis process. Journal of Solid State Chemistry, 180, 489–495. DOI: 10.1016/j.jssc.2006.11.005. http://dx.doi.org/10.1016/j.jssc.2006.11.00510.1016/j.jssc.2006.11.005Search in Google Scholar

[27] Moezzi, A., McDonagh, A. M., & Cortie, M. B. (2012). Zinc oxide particles: Synthesis, properties and applications. Chemical Engineering Journal, 185–186, 1–22. DOI: 10.1016/j.cej.2012.01.076. http://dx.doi.org/10.1016/j.cej.2012.01.07610.1016/j.cej.2012.01.076Search in Google Scholar

[28] Okuyama, K., & Wuled Lenggoro, I. (2003). Preparation of nanoparticles via spray route. Chemical Engineering Science, 58, 537–547. DOI: 10.1016/s0009-2509(02)00578-x. http://dx.doi.org/10.1016/S0009-2509(02)00578-X10.1016/S0009-2509(02)00578-XSearch in Google Scholar

[29] Pope, M. T., & Müller, A. (2010). Polyoxometalate chemistry: from topology via self-assembly to applications. Dordrecht, The Netherlands: Kluwer Academic Publishers. Search in Google Scholar

[30] Rashidi, H., Ahmadpour, A., Bamoharram, F. F., Heravi, M. M., & Ayati, A. (2013). The novel, one step and facile synthesis of ZnO nanoparticles using heteropolyoxometalates and their photoluminescence behavior. Advanced Powder Technology, 24, 549–553. DOI: 10.1016/j.apt.2012.10.008. http://dx.doi.org/10.1016/j.apt.2012.10.00810.1016/j.apt.2012.10.008Search in Google Scholar

[31] Rataboul, F., Nayral, C., Casanove, M. J., Maisonnat, A., & Chaudret, B. (2002). Synthesis and characterization of monodisperse zinc and zinc oxide nanoparticles from the organometallic precursor [Zn(C6H11)2]. Journal of Organometallic Chemistry, 643–644, 307–312. DOI: 10.1016/s0022-328x(01)01378-x. http://dx.doi.org/10.1016/S0022-328X(01)01378-X10.1016/S0022-328X(01)01378-XSearch in Google Scholar

[32] Shafaei, A., Nikazar, M., & Arami, M. (2010). Photocatalytic degradation of terephthalic acid using titania and zinc oxide photocatalysts: Comparative study. Desalination, 252, 8–16. DOI: 10.1016/j.desal.2009.11.008. http://dx.doi.org/10.1016/j.desal.2009.11.00810.1016/j.desal.2009.11.008Search in Google Scholar

[33] Singhai, M., Chhabra, V., Kang, P., & Shah, D. O. (1997). Synthesis of ZnO nanoparticles for varistor application using Zn-substituted aerosol ot microemulsion. Materials Research Bulletin, 32, 239–247. DOI: 10.1016/s0025-5408(96)00175-4. http://dx.doi.org/10.1016/S0025-5408(96)00175-410.1016/S0025-5408(96)00175-4Search in Google Scholar

[34] Song, P., Wang, Q., & Yang, Z. X. (2012). Acetone sensing characteristics of ZnO hollow spheres prepared by one-pot hydrothermal reaction. Materials Letters, 86, 168–170. DOI: 10.1016/j.matlet.2012.07.058. http://dx.doi.org/10.1016/j.matlet.2012.07.05810.1016/j.matlet.2012.07.058Search in Google Scholar

[35] Tokumoto, M. S., Pulcinelli, S. H., Santilli, C. V., & Briois, V. (2003). Catalysis and temperature dependence on the formation of ZnO nanoparticles and of zinc acetate derivatives prepared by the sol-gel route. Journal of Physical Chemistry B, 107, 568–574. DOI: 10.1021/jp0217381. http://dx.doi.org/10.1021/jp021738110.1021/jp0217381Search in Google Scholar

[36] Tsuzuki, T., & McCormick, P. G. (2001). ZnO nanoparticles synthesized by mechanochemical processing. Scripta Materialia, 44, 1731–1735. DOI: 10.1016/s1359-6462(01)00793-x. http://dx.doi.org/10.1016/S1359-6462(01)00793-X10.1016/S1359-6462(01)00793-XSearch in Google Scholar

[37] Turton, R., Berry, D. A., Gardner, T. H., & Miltz, A. (2004). Evaluation of zinc oxide sorbents in a pilot-scale transport reactor: Sulfidation kinetics and reactor modeling. Industrial & Engineering Chemistry Research, 43, 1235–1243. DOI: 10.1021/ie030364a. http://dx.doi.org/10.1021/ie030364a10.1021/ie030364aSearch in Google Scholar

[38] Viswanathan, R., Lilly, G. D., Gale, W. F., & Gupta, R. B. (2003). Formation of zinc oxide-titanium dioxide composite nanoparticles in supercritical water. Industrial & Engineering Chemistry Research, 42, 5535–5540. DOI: 10.1021/ie0302701. http://dx.doi.org/10.1021/ie030270110.1021/ie0302701Search in Google Scholar

[39] Wang, J. M., & Gao, L. (2003). Synthesis and characterization of ZnO nanoparticles assembled in one-dimensional order. Inorganic Chemistry Communications, 6, 877–881. DOI: 10.1016/s1387-7003(03)00134-5. http://dx.doi.org/10.1016/S1387-7003(03)00134-510.1016/S1387-7003(03)00134-5Search in Google Scholar

[40] Wang, Z. S., Huang, C. H., Huang, Y. Y., Hou, Y. J., Xie, P. H., Zhang, B. W., & Cheng, H. M. (2001). A highly efficient solar cell made from a dye-modified ZnO-covered TiO2 nanoporous electrode. Chemistry of Materials, 13, 678–682. DOI: 10.1021/cm000230c. http://dx.doi.org/10.1021/cm000230c10.1021/cm000230cSearch in Google Scholar

[41] Wang, M. S., Hahn, S. H., Kim, J. S., Chung, J. S., Kim, E. J., & Koo, K. K. (2008). Solvent-controlled crystallization of zinc oxide nano(micro)disks. Journal of Crystal Growth, 310, 1213–1219. DOI: 10.1016/j.jcrysgro.2008.01.001. http://dx.doi.org/10.1016/j.jcrysgro.2008.01.00110.1016/j.jcrysgro.2008.01.001Search in Google Scholar

[42] Wang, F., Qin, X. F., Guo, Z. L., Meng, Y. F., Yang, L. X., & Ming, Y. F. (2013). Hydrothermal synthesis of dumbbellshaped ZnO microstructures. Ceramics International. DOI: 10.1016/j.ceramint.2013.04.096. (in press) 10.1016/j.ceramint.2013.04.096Search in Google Scholar

[43] Yu, W. D., Li, X. M., & Gao, X. D. (2005). Catalytic synthesis and structural characteristics of high-quality tetrapodlike ZnO nanocrystals by a modified vapor transport process. Crystal Growth & Design, 5, 151–155. DOI: 10.1021/cg0499 73r. http://dx.doi.org/10.1021/cg049973rSearch in Google Scholar

[44] Zheng, M. J., Zhang, L. D., Li, G. H., & Shen, W. Z. (2002). Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique. Chemical Physics Letters, 363, 123–128. DOI: 10.1016/s0009-2614(02)01106-5. http://dx.doi.org/10.1016/S0009-2614(02)01106-510.1016/S0009-2614(02)01106-5Search in Google Scholar

[45] Zhou, Y., Liu, C., Li, M. Y., Wu, H. Y., Zhong, X., Li, D., & Xu, D. (2013). Fabrication and optical properties of ordered sea urchin-like ZnO nanostructures by a simple hydrothermal process. Materials Letters, 106, 94–96. DOI: 10.1016/j.matlet.2013.04.102. http://dx.doi.org/10.1016/j.matlet.2013.04.10210.1016/j.matlet.2013.04.102Search in Google Scholar

Published Online: 2013-12-20
Published in Print: 2014-4-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Determination of mercury species using thermal desorption analysis in AAS
  2. Non-enzymatic hydrogen peroxide sensor based on a nanoporous gold electrode modified with platinum nanoparticles
  3. Production and application of amylases of Rhizopus oryzae and Rhizopus microsporus var. oligosporus from industrial waste in acquisition of glucose
  4. Effect of salicin on induction and carbon catabolite repression of endoxylanase synthesis in Penicillium janthinellum MTCC 10889
  5. Recovery of acetaminophen from aqueous solutions using a supported liquid membrane based on a quaternary ammonium salt as ionophore
  6. Enantioseparation of mandelic acid enantiomers in ionic liquid aqueous two-phase extraction systems
  7. Fatty acid methyl ester production from acid oil using silica sulfuric acid: Process optimization and reaction kinetics
  8. Mineral constituents of edible parasol mushroom Macrolepiota procera (Scop. ex Fr.) Sing and soils beneath its fruiting bodies collected from a rural forest area
  9. Evaluation of antioxidants in Dong quai (Angelica sinensis) and its dietary supplements
  10. Electrochemical storage properties of polyaniline-, poly(N-methylaniline)-, and poly(N-ethylaniline)-coated pencil graphite electrodes
  11. Controllable one-step synthesis of ZnO nanostructures using molybdophosphoric acid
  12. I2-mediated α-selective Ferrier glycosylation approach to synthesis of O-glycosyl amino acids
  13. Synthesis of 1,1-diacetates catalysed by silica-supported boron sulfonic acid under solvent-free conditions and ambient temperature
  14. Development of oxopyrrolidine-based anti-cancer compounds: DNA binding, in silico, cell line studies, drug-likeness and mechanism at supra-molecular level
  15. Clay and charcoal composites: characterisation and application of factorial design analysis for dye adsorption
  16. Role of thermoxidation and depolymerisation in the ageing of systems paper/gum arabic/historical ink
  17. Natural organic acids promoted Beckmann rearrangement: Green and expeditious synthesis of amides under solvent-free conditions
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0474-x/html
Scroll to top button