Home Production and application of amylases of Rhizopus oryzae and Rhizopus microsporus var. oligosporus from industrial waste in acquisition of glucose
Article
Licensed
Unlicensed Requires Authentication

Production and application of amylases of Rhizopus oryzae and Rhizopus microsporus var. oligosporus from industrial waste in acquisition of glucose

  • Aline Freitas EMAIL logo , Bruna Escaramboni , Ana Carvalho , Valéria Lima and Pedro Oliva-Neto
Published/Copyright: December 20, 2013
Become an author with De Gruyter Brill

Abstract

Amylases from Rhizopus oryzae and Rhizopus microsporus var. oligosporus were obtained using agro-industrial wastes as substrates in submerged batch cultures. The enzymatic complex was partially characterised for use in the production of glucose syrup. Type II wheat flour proved better than cassava bagasse as sole carbon source for amylase production. The optimum fermentation condition for both microorganisms was 96 hours at 30°C and the amylase thus produced was used for starch hydrolysis. The product of the enzymatic hydrolysis indicated that the enzyme obtained was glucoamylase, only glucose as final product was attained for both microorganisms. R. oligosporus was of greater interest than R. oryzae for amylase production, taking into account enzyme activity, cultivation time, thermal stability and pH range. Glucose syrup was produced using concentrated enzyme and 100 g L−1 starch in a 4 hours reaction at 50°C. The bioprocess studied can contribute to fungus glucoamylase production and application.

[1] Anto, H., Trivedi, U., & Patel, K. (2006). Alpha amylase production by Bacillus cereus MTCC 1305 using solid-state fermentation. Food Technology and Biotechnology, 44, 241–245. Search in Google Scholar

[2] Asgher, M., Asad, J. M., Rahman, S. U., & Legge, R. L. (2007). A thermostable α-amylase from a moderately thermophilic Bacillus subtilis strain for starch processing. Journal of Food Engineering, 79, 950–955. DOI: 10.1016/j.jfoodeng.2005.12.053. http://dx.doi.org/10.1016/j.jfoodeng.2005.12.05310.1016/j.jfoodeng.2005.12.053Search in Google Scholar

[3] Belmessikh, A., Boukhalfa, H., Mechakra-Maza, A., Gheribi-Aoulmi, Z., & Amrane, A. (2013). Statistical optimization of culture medium for neutral protease production by Aspergillus oryzae. Comparative study between solid and submerged fermentations on tomato pomace. Journal of the Taiwan Institute of Chemical Engineers, 44, 377–385. DOI: 10.1016/j.jtice.2012.12.011. http://dx.doi.org/10.1016/j.jtice.2012.12.01110.1016/j.jtice.2012.12.011Search in Google Scholar

[4] Bradford, M. M. (1976). A rapid sensitive method for a quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. DOI: 10.1016/0003-2697(76)90527-3. http://dx.doi.org/10.1016/0003-2697(76)90527-310.1016/0003-2697(76)90527-3Search in Google Scholar

[5] Carvalho, A. F. A., Gonçalves, A. Z., da Silva, R., & Gomes, E. (2006). A specific short dextrin-hydrolyzing extracellular glucosidase from the thermophilic fungus Thermoascus aurantiacus 179-5. The Journal of Microbiology, 44, 276–283. Search in Google Scholar

[6] Castro, A. M., Carvalho, D. F., Freire, D. M. G., & Dos Reis Castilho, L. (2010). Economic analysis of the production of amylases and other hydrolases by Aspergillus awamori in solid-state fermentation of babassu cake. Enzyme Research, 2010, 576872. DOI: 10.4061/2010/576872. 10.4061/2010/576872Search in Google Scholar PubMed PubMed Central

[7] de Souza, P. M., & Magalhães, P. O. (2010). Application of microbial α-amylase in industry — A review. Brazilian Journal of Microbiology, 41, 850–861. DOI: 10.1590/s1517-83822010000400004. 10.1590/S1517-83822010000400004Search in Google Scholar PubMed PubMed Central

[8] Elisashvili, V., Kachlishvili, E., & Penninckx, M. (2008). Effect of growth substrate, method of fermentation, and nitrogen source on lignocellulose-degrading enzymes production by white-rot basidiomycetes. Journal of Industrial Microbiology & Biotechnology, 35, 1531–1538. DOI: 10.1007/s10295-008-0454-2. http://dx.doi.org/10.1007/s10295-008-0454-210.1007/s10295-008-0454-2Search in Google Scholar PubMed

[9] Ezeji, T. C., & Bahl, H. (2006). Purification, characterization, and synergistic action of phytate-resistant α-amylase and α-glucosidase from Geobacillus thermodenitrificans HRO10. Journal of Biotechnology, 125, 27–38. DOI:10.1016/j.jbiotec.2006.02.006. http://dx.doi.org/10.1016/j.jbiotec.2006.02.00610.1016/j.jbiotec.2006.02.006Search in Google Scholar PubMed

[10] Franco, C. M. L., Daiuto, E. R., Demiate, I. M., Carvalho, L. J. C. B., Leonel, M., Cereda, M. P., Vilpoux, O. F., & Sarmento, S. B. S. (2001). Propriedades gerais do amido (Vol. 1, pp. 141–185). São Paulo, Brazil: Fundação Cargill. Search in Google Scholar

[11] Gangadharan, D., & Sivaramakrishnan, S. (2009). Amylolytic enzymes. In P. S. N. Nigan, & A. Pandey (Eds), Biotechnology for agro-industrial residues utilisation (pp. 359–369). Netherlands: Springer. DOI: 10.1007/978-1-4020-9942-7. http://dx.doi.org/10.1007/978-1-4020-9942-7_1910.1007/978-1-4020-9942-7Search in Google Scholar

[12] Ghosh, B., & Ray, R. R. (2010). Saccharification of raw native starches by extracellular isoamylase of Rhizopus oryzae. Biotechnology, 9, 224–228. DOI: 10.3923/biotech.2010.224.228. http://dx.doi.org/10.3923/biotech.2010.224.22810.3923/biotech.2010.224.228Search in Google Scholar

[13] Ghosh, B., & Ray, R. (2011). Current commercial perspective of Rhizopus oryzae: A review. Journal of Applied Sciences, 14, 2470–2486. DOI: 10.3923/jas.2011.2470.2486. 10.3923/jas.2011.2470.2486Search in Google Scholar

[14] Gomes, E., Guez, M. A. U., Martin, N., & da Silva, R. (2007). Enzimas termoestávies: Fontes, produção e aplicação industrial. Química Nova, 30, 136–145. DOI: 10.1590/s0100-40422007000100025. (in Portugese) http://dx.doi.org/10.1590/S0100-4042200700010002510.1590/S0100-40422007000100025Search in Google Scholar

[15] Gupta, R., Gigras, P., Mohapatra, H., Goswami, V. K., & Chauhan, B. (2003). Microbial α-amylases: a biotechnological perspective. Process Biochemistry, 38, 1599–1616. DOI: 10.1016/s0032-9592(03)00053-0. http://dx.doi.org/10.1016/S0032-9592(03)00053-010.1016/S0032-9592(03)00053-0Search in Google Scholar

[16] Ikram-ul-Haq, Ashraf, H., Iqbal, J., & Qadeer, M. (2003). Production of alpha amylase by Bacillus licheniformis using an economical medium. Bioresource Technology, 87, 57–61. http://dx.doi.org/10.1016/S0960-8524(02)00198-010.1016/S0960-8524(02)00198-0Search in Google Scholar

[17] Krishna, C. (2005). Solid-state fermentation systems — an overview. Critical Reviews in Biotechnology, 25, 1–30. DOI: 10.1080/07388550590925383. http://dx.doi.org/10.1080/0738855059092538310.1080/07388550590925383Search in Google Scholar PubMed

[18] Kumar, V., Sahai, V., & Bisaria, V. S. (2012). Production of amylase and chlamydospores by Piriformospora indica, a root endophytic fungus. Biocatalysis and Agricultural Biotechnology, 1, 124–128. DOI: 10.1016/j.bcab.2012.02.002. http://dx.doi.org/10.1016/j.bcab.2012.02.00210.1016/j.bcab.2012.02.002Search in Google Scholar

[19] Liu, X. D., & Xu, Y. (2008). A novel raw starch digesting α-amylase from a newly isolated Bacillus sp. YX-1: Purification and characterization. Bioresource Technology, 99, 4315–4320. DOI: 10.1016/j.biortech.2007.08.040. http://dx.doi.org/10.1016/j.biortech.2007.08.04010.1016/j.biortech.2007.08.040Search in Google Scholar PubMed

[20] Michelin, M., Silva, T. M., Benassi, V. M., Peixoto-Nogueira, S. C., Moraes, L. A. B., Leão, J. M., Jorge, J. A., Terenzi, H. F., & Polizeli, M. D. T. M. (2010). Purification and characterization of a thermostable α-amylase produced by the fungus Paecilomyces variotii. Carbohydrate Research, 345, 2348–2353. DOI: 10.1016/j.carres.2010.08.013. http://dx.doi.org/10.1016/j.carres.2010.08.01310.1016/j.carres.2010.08.013Search in Google Scholar PubMed

[21] Mitidieri, S., Souza Martinelli, A. H., Schrank, A., & Vainstein, M. H. (2006). Enzymatic detergent formulation containing amylase from Aspergillus niger. A comparative study with commercial detergent formulations. Bioresource Technology, 97, 1217–1224. DOI: 10.1016/j.biortech.2005.05.022. http://dx.doi.org/10.1016/j.biortech.2005.05.02210.1016/j.biortech.2005.05.022Search in Google Scholar PubMed

[22] Mosier, N. S., & Ladisch, M. R. (2009). Modern biotechnology: Connecting innovations in microbiology and biochemistry to engineering fundamentals (pp. 433). Hoboken, NJ, USA: Wiley. http://dx.doi.org/10.1002/978047047341210.1002/9780470473412Search in Google Scholar

[23] Nitayavardhana, S., & Khanal, S. K. (2011). Biodiesel-derived crude glycerol bioconversion to animal feed: A sustainable option for a biodiesel refinery. Bioresource Technology, 102, 5808–5814. DOI: 10.1016/j.biortech.2011.02.058. http://dx.doi.org/10.1016/j.biortech.2011.02.05810.1016/j.biortech.2011.02.058Search in Google Scholar PubMed

[24] Norouzian, D., Akbarzadeh, A., Scharer, J. M., & Young, M. M. (2006). Fungal glucoamylases. Biotechnology Advances, 24, 80–85. DOI: 10.1016/j.biotechadv.2005.06.003. http://dx.doi.org/10.1016/j.biotechadv.2005.06.00310.1016/j.biotechadv.2005.06.003Search in Google Scholar

[25] Pandey, A., Nigam, P., Soccol, C. R., Soccol, V. T., Singh, D., & Mohan, R. (2000). Advances in microbial amylases. Biotechnology and Applied Biochemistry, 31, 135–152. http://dx.doi.org/10.1042/BA1999007310.1042/BA19990073Search in Google Scholar

[26] Peixoto, S. C., Jorge, J. A., Terenzi, H. F., & Polizeli, M. D. T. M. (2003). Rhizopus microsporus var. rhizopodiformis: a thermotolerant fungus with potential for production of thermostable amylases. International Microbiology, 6, 269–273. DOI: 10.1007/s10123-003-0140-1. http://dx.doi.org/10.1007/s10123-003-0140-110.1007/s10123-003-0140-1Search in Google Scholar

[27] Rani, R., & Ghosh, S. (2011). Production of phytase under solid-state fermentation using Rhizopus oryzae: Novel strain improvement approach and studies on purification and characterization. Bioresource Technology, 102, 10641–10649. DOI: 10.1016/j.biortech.2011.08.075. http://dx.doi.org/10.1016/j.biortech.2011.08.07510.1016/j.biortech.2011.08.075Search in Google Scholar

[28] Sarrouh, B., Santos, T. M., Miyoshi, A., Dias, R., & Azevedo, V. (2012). Up-to-date insight on industrial enzymes applications and global market. Journal of Bioprocessing & Biotechniques, S4, 002. DOI: 10.4172/2155-9821.s4-002. 10.4172/2155-9821.S4-002Search in Google Scholar

[29] Sharma, A., & Satyanarayana, T. (2013). Microbial acid-stable α-amylases: Characteristics, genetic engineering and applications. Process Biochemistry, 48, 201–211. DOI: 10.1016/j.procbio.2012.12.018. http://dx.doi.org/10.1016/j.procbio.2012.12.01810.1016/j.procbio.2012.12.018Search in Google Scholar

[30] Sivaramakrishnan, S., Gangadharan, D., Madhavan, K., Soccol, C. R., & Pandey, A. (2006). α-Amylases from microbial sources — an overview on recent developments. Food Technology and Biotechnology, 44, 173–184. Search in Google Scholar

[31] Soccol, C. R., Iloki, I., Marin, B., & Raimbault, M. (1994). Comparative production of alpha-amylase, glucoamylase and protein enrichment of raw and cooked cassava by Rhizopus strains in submerged and solid state fermentations. Journal of Food Science and Technology, 31, 320–323. Search in Google Scholar

[32] Soccol, C. R., & Vandenberghe, L. P. S. (2003). Overview of applied solid-state fermentation in Brazil. Biochemical Engineering Journal, 13, 205–218. DOI: 10.1016/s1369-703x(02)00133-x. http://dx.doi.org/10.1016/S1369-703X(02)00133-X10.1016/S1369-703X(02)00133-XSearch in Google Scholar

[33] Soccol, C. R., Rojan, P. J., Patel, A. K., Woiciechowski, A. L., Vandenberghe, L. P. S., & Pandey, A. (2006). Glucoamylase. In: A. Pandey, C. Webb, C. R. Soccol, & C. Larroche (Eds.), Enzyme technology (pp. 221–230). New Delhi, India: Asiatec Publishers. Search in Google Scholar

[34] Soni, S. K., Kaur, A., & Gupta, J. K. (2003). A solid state fermentation based bacterial α-amylase and fungal glucoamylase system and its suitability for the hydrolysis of wheat starch. Process Biochemistry, 39, 185–192. DOI: 10.1016/s0032-9592(03)00058-x. http://dx.doi.org/10.1016/S0032-9592(03)00058-X10.1016/S0032-9592(03)00058-XSearch in Google Scholar

[35] Surmely, R., Alvarez, H., Cereda, M. P., & Vilpoux, O. F. (2003). Hidrólise do amido. In M. P. Cereda, & O. F. Vilpoux (Eds.), Tecnologia, usos e potencialidades de tuberosas amiláceas Latino Americanas (Vol. 3, pp. 376–449). São Paulo, Brazil: Fundação Cargill. (in Portugese) Search in Google Scholar

[36] van der Maarel, M. J. E. C., van der Veen, B., Uitdehaag, J. C. M., Leemhuis, H., & Dijkhuizen, L. (2002). Properties and applications of starch-converting enzymes of the α-amylase family. Journal of Biotechnology, 94, 137–155. DOI: 10.1016/s0168-1656(01)00407-2. http://dx.doi.org/10.1016/S0168-1656(01)00407-210.1016/S0168-1656(01)00407-2Search in Google Scholar

[37] van Leeuwen, J., Rasmussen, M. L., Sankaran, S., Koza, C. R., Erickson, D. T., Mitra, D., & Jin, B. (2012). Fungal treatment of crop processing wastewaters with value-added coproducts. In K. Gopalakrishnan, J. van Leeuwen, & R. C. Brown (Eds.), Sustainable bioenergy and bioproducts, green energy and technology (pp. 13–44). London, UK: Springer. DOI: 10.1007/978-1-4471-2324-82. http://dx.doi.org/10.1007/978-1-4471-2324-8_2Search in Google Scholar

Published Online: 2013-12-20
Published in Print: 2014-4-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Determination of mercury species using thermal desorption analysis in AAS
  2. Non-enzymatic hydrogen peroxide sensor based on a nanoporous gold electrode modified with platinum nanoparticles
  3. Production and application of amylases of Rhizopus oryzae and Rhizopus microsporus var. oligosporus from industrial waste in acquisition of glucose
  4. Effect of salicin on induction and carbon catabolite repression of endoxylanase synthesis in Penicillium janthinellum MTCC 10889
  5. Recovery of acetaminophen from aqueous solutions using a supported liquid membrane based on a quaternary ammonium salt as ionophore
  6. Enantioseparation of mandelic acid enantiomers in ionic liquid aqueous two-phase extraction systems
  7. Fatty acid methyl ester production from acid oil using silica sulfuric acid: Process optimization and reaction kinetics
  8. Mineral constituents of edible parasol mushroom Macrolepiota procera (Scop. ex Fr.) Sing and soils beneath its fruiting bodies collected from a rural forest area
  9. Evaluation of antioxidants in Dong quai (Angelica sinensis) and its dietary supplements
  10. Electrochemical storage properties of polyaniline-, poly(N-methylaniline)-, and poly(N-ethylaniline)-coated pencil graphite electrodes
  11. Controllable one-step synthesis of ZnO nanostructures using molybdophosphoric acid
  12. I2-mediated α-selective Ferrier glycosylation approach to synthesis of O-glycosyl amino acids
  13. Synthesis of 1,1-diacetates catalysed by silica-supported boron sulfonic acid under solvent-free conditions and ambient temperature
  14. Development of oxopyrrolidine-based anti-cancer compounds: DNA binding, in silico, cell line studies, drug-likeness and mechanism at supra-molecular level
  15. Clay and charcoal composites: characterisation and application of factorial design analysis for dye adsorption
  16. Role of thermoxidation and depolymerisation in the ageing of systems paper/gum arabic/historical ink
  17. Natural organic acids promoted Beckmann rearrangement: Green and expeditious synthesis of amides under solvent-free conditions
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0466-x/html
Scroll to top button