Home Experimental and numerical investigation of pressure drop coefficient and static pressure difference in a tangential inlet cyclone separator
Article
Licensed
Unlicensed Requires Authentication

Experimental and numerical investigation of pressure drop coefficient and static pressure difference in a tangential inlet cyclone separator

  • Fuat Kaya EMAIL logo and Irfan Karagoz
Published/Copyright: July 27, 2012
Become an author with De Gruyter Brill

Abstract

The aim of this study was to investigate the pressure drop coefficient and the static pressure difference related to the natural vortex length and to evaluate the results for gas-particle applications. CFD simulations were carried out using a numerical technique which had been verified previously. Results obtained from the numerical simulations were compared with the experimental data. Analysis of the results showed that the pressure drop coefficient decreases with the increasing inlet velocity, becoming almost constant above a certain value of the inlet velocity. The reason is that the effect of viscous forces decreases at high Reynolds numbers. The pressure drop coefficient also decreases with the increasing exit pipe diameter and decreasing exit pipe length.

[1] Chuah, T. G., Gimbun, J., & Choong, T. S. Y. (2006). A CFD study the effect of cone dimensions on sampling aerocyclones performance and hydrodynamics. Powder Technology, 162, 126–132. DOI: 10.1016/j.powtec.2005.12.010. http://dx.doi.org/10.1016/j.powtec.2005.12.01010.1016/j.powtec.2005.12.010Search in Google Scholar

[2] Cortés, C., & Gil, A. (2007). Modeling the gas and particle flow inside cyclone separators. Progress in Energy and Combustion Science, 33, 409–452. DOI: 10.1016/j.pecs.2007.02.001. http://dx.doi.org/10.1016/j.pecs.2007.02.00110.1016/j.pecs.2007.02.001Search in Google Scholar

[3] Gil, A., Cortés, C., Romeo, L. M., & Velilla, J. (2002). Gasparticle flow inside cyclone diplegs with pneumatic extraction. Powder Technology, 128, 78–91. DOI: 10.1016/s0032-5910(02)00215-2. http://dx.doi.org/10.1016/S0032-5910(02)00215-210.1016/S0032-5910(02)00215-2Search in Google Scholar

[4] Gimbun, J., Chuah, T. G., Fakhru’l-Razi, A., & Choong, T. S. Y. (2005). The influence of temperature and inlet velocity on cyclone pressure lose: a CFD study. Chemical Engineering and Processing, 44, 7–12. DOI: 10.1016/j.cep.2004.03.005. http://dx.doi.org/10.1016/j.cep.2004.03.00510.1016/j.cep.2004.03.005Search in Google Scholar

[5] Gong, A. L., & Wang, L. Z. (2004). Numerical study of gas phase flow in cyclones with the repds. Aerosol Science and Technology, 38, 506–512. DOI: 10.1080/02786820490449548. http://dx.doi.org/10.1080/0278682049044954810.1080/02786820490449548Search in Google Scholar

[6] Hoekstra, A. J., Derksen, J. J., & Van Den Akker, H. E. A. (1999). An experimental and numerical study of turbulent swirling flow in gas cyclones. Chemical Engineering Science, 54, 2055–2065. DOI: 10.1016/s0009-2509(98)00373-x. http://dx.doi.org/10.1016/S0009-2509(98)00373-X10.1016/S0009-2509(98)00373-XSearch in Google Scholar

[7] Hoffmann, A. C., De Groot, M., & Hospers, A. (1996). The effect of the dust collection system on the flowpat-tern and separation efficiency of a gas cyclone. The Canadian Journal of Chemical Engineering, 74, 464–470. DOI: 10.1002/cjce.5450740405. http://dx.doi.org/10.1002/cjce.545074040510.1002/cjce.5450740405Search in Google Scholar

[8] Karagoz, I., & Avci, A. (2005). Modelling of the pressure drop in tangential inlet cyclone separators. Aerosol Science and Technology, 39, 857–865. DOI: 10.1080/02786820500295560. http://dx.doi.org/10.1080/0278682050029556010.1080/02786820500295560Search in Google Scholar

[9] Karagoz, I., & Kaya, F. (2007). CFD investigation of the flow and heat transfer characteristics in a tangential inlet cyclone. International Communications in Heat and Mass Transfer, 34, 1119–1126. DOI: 10.1016/j.icheatmasstransfer.2007.05.017. http://dx.doi.org/10.1016/j.icheatmasstransfer.2007.05.01710.1016/j.icheatmasstransfer.2007.05.017Search in Google Scholar

[10] Karagoz, I., & Kaya, F. (2009). Evaluations of turbulence models for highly swirling flows in cyclones. Computer Modeling in Engineering & Sciences, 43, 111–130. DOI: 10.3970/cmes.2009.043.111. Search in Google Scholar

[11] Kaya, F., & Karagoz, I. (2008). Performance analysis of numerical schemes in swirling turbulent flows in cyclones. Current Science, 94, 1273–1278. Search in Google Scholar

[12] Kaya, F., & Karagoz, I. (2009). Numerical investigation of performance characteristics of a cyclone prolonged with a dipleg. Chemical Engineering Journal, 151, 39–45. DOI: 10.1016/j.cej.2009.01.040. http://dx.doi.org/10.1016/j.cej.2009.01.04010.1016/j.cej.2009.01.040Search in Google Scholar

[13] Kenny, L. C., & Gussman, R. A. (1997). Characterizations and modelling of a family of cyclone aerosol preseparators. Journal of Aerosol Science, 28, 677–688. DOI: 10.1016/s0021-8502(96)00455-7. http://dx.doi.org/10.1016/S0021-8502(96)00455-710.1016/S0021-8502(96)00455-7Search in Google Scholar

[14] Kim, J. C., & Lee, K. W. (1990). Experimental study of particle collection by small cyclones. Aerosol Science and Technology, 12, 1003–1015. DOI: 10.1080/02786829008959410. http://dx.doi.org/10.1080/0278682900895941010.1080/02786829008959410Search in Google Scholar

[15] König, C., Büttner, H., & Ebert, F. (1991). Desing data for cyclones. Particle & Particle Systems Characterization, 8, 301–307. DOI: 10.1002/ppsc.19910080155. http://dx.doi.org/10.1002/ppsc.1991008015510.1002/ppsc.19910080155Search in Google Scholar

[16] Lapple, C. E., (1951). Processes use many collector types. Chemical Engineering, 58, 144–151. Search in Google Scholar

[17] Moore, M. E., & McFarland, A. R. (1993). Performance modelling of single-inlet aerosol sampling cyclones. Environmental Science & Technology, 27, 1842–1848. DOI: 10.1021/es00046a012. http://dx.doi.org/10.1021/es00046a01210.1021/es00046a012Search in Google Scholar

[18] Obermair, S., Woisetschläger, J., & Staudinger, G. (2003). Investigation of the flow pattern in different dust outlet geometries of a gas cyclone by laser Doppler anemometry. Powder Technology, 138, 239–251. DOI: 10.1016/j.powtec.2003.09.009. http://dx.doi.org/10.1016/j.powtec.2003.09.00910.1016/j.powtec.2003.09.009Search in Google Scholar

[19] Qian, F. P., Zhang, J. G., & Zhang, M. Y. (2006). Effects of the prolonged vertical tube on the separation performance of a cyclone. Journal of Hazardous Materials, 136, 822–829. DOI: 10.1016/j.jhazmat.2006.01.028. http://dx.doi.org/10.1016/j.jhazmat.2006.01.02810.1016/j.jhazmat.2006.01.028Search in Google Scholar

[20] Stairmand, C. J. (1951). The design and performance of cyclone separators. Transaction of the Institution of Chemical Engineers, 29, 356–383. Search in Google Scholar

[21] Upton, S. L., Mark, D., Douglass, E. J., Hall, D. J., & Griffiths, W. D. (1994). A wind tunnel evaluation of the physical sampling efficiencies of three bioaerosol samplers. Journal of Aerosol Science, 25, 1493–1501. DOI: 10.1016/0021-8502 (94)90220-8. http://dx.doi.org/10.1016/0021-8502(94)90220-810.1016/0021-8502(94)90220-8Search in Google Scholar

[22] Xiang, R. B., Park, S. H., & Lee, K. W. (2001). Effects of cone dimension on cyclone performance. Journal of Aerosol Science, 32, 549–561. DOI: 10.1016/s0021-8502(00)00094-x. http://dx.doi.org/10.1016/S0021-8502(00)00094-X10.1016/S0021-8502(00)00094-XSearch in Google Scholar

Published Online: 2012-7-27
Published in Print: 2012-11-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Immobilization in biotechnology and biorecognition: from macro- to nanoscale systems
  2. Bond-graph description and simulation of membrane processes: Permeation in a compartmental membrane system
  3. Design simulations for a biogas purification process using aqueous amine solutions
  4. Experimental and numerical investigation of pressure drop coefficient and static pressure difference in a tangential inlet cyclone separator
  5. Trace elements in Variegated Bolete (Suillus variegatus) fungi
  6. N,N′-methylenedipyridinium Pt(II) and Pt(IV) hybrid salts: synthesis, crystal and molecular structures of [(C5H5N)2CH2] · [PtCl4] and [(C5H5N)2CH2] · [PtCl6]
  7. Formation of membranes based on polyacrylonitrile and butadiene-acrylonitrile elastomer in the presence of copper ions
  8. One-step synthesis of solid sulfonic acid catalyst and its application in the acetalization of glycerol: crystal structure of cis-5-hydroxy-2-phenyl-1,3-dioxane trimer
  9. Mechanistic insights into the reaction of CF3CCl3 with SO3: Theory and experiment
  10. Near-infrared imaging for quantitative analysis of active component in counterfeit dimethomorph using partial least squares regression
  11. Corrosion of titanium diboride in molten FLiNaK(eut)
  12. Domino synthesis of novel series of 4-substituted 5-thioxo-1,2,4-triazolidin-3-one derivatives
  13. Erratum to: “Nguyen Hoang Loc, Nguyen Thanh Giang: Effects of elicitors on the enhancement of asiaticoside biosynthesis in cell cultures of centella (Centella asiatica L. Urban)”, Chemical Papers 66 (7) 642–648 (2012)
Downloaded on 27.9.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0214-7/html
Scroll to top button