Home Influence of purine on copper behavior in neutral and alkaline sulfate solutions
Article
Licensed
Unlicensed Requires Authentication

Influence of purine on copper behavior in neutral and alkaline sulfate solutions

  • Marija Petrović EMAIL logo , Ana Simonović , Milan Radovanović , Snežana Milić and Milan Antonijević
Published/Copyright: June 22, 2012
Become an author with De Gruyter Brill

Abstract

The effect of purine (concentration range of 1.00 × 10−6–1.00 × 10−2 M) on the behavior of copper in a 0.5 M Na2SO4 solution (pH 7 and pH 9) was studied using the open circuit potential measurement, potentiodynamic polarization, and chronoamperometry. Potentiodynamic polarization shows that purine acts as a copper corrosion inhibitor in both alkaline and neutral sulfate solutions. The efficiency of inhibition increases as the purine concentration increases. Chronoamperometric results follow the same trend as the results of potentiodynamic polarization. The inhibition effect can also be observed visually by microscopic examination of the electrode surface. Purine is adsorbed on copper surface according to the Langmuir adsorption isotherm.

[1] Abdel Rehim, S. S., Hazzazi, O. A., Amin, M. A., & Khaled, K. F. (2008). On the corrosion inhibition of low carbon steel in concentrated sulphuric acid solutions. Part I: Chemical and electrochemical (AC and DC) studies. Corrosion Science, 50, 2258–2271. DOI: 10.1016/j.corsci.2008.06.005. http://dx.doi.org/10.1016/j.corsci.2008.06.00510.1016/j.corsci.2008.06.005Search in Google Scholar

[2] Abdullah, A. M., Al-Kharafi, F. M., & Ateya, B. G. (2006). Intergranular corrosion of copper in the presence of benzotriazole. Scripta Materialia, 54, 1673–1677. DOI: 10.1016/j.scriptamat.2006.01.014. http://dx.doi.org/10.1016/j.scriptamat.2006.01.01410.1016/j.scriptamat.2006.01.014Search in Google Scholar

[3] Amin, M. A., Mohsen, Q., & Hazzazi, O. A. (2009). Synergistic effect of I− ions on the corrosion inhibition of Al in 1.0 M phosphoric acid solutions by purine. Materials Chemistry and Physics, 114, 908–914. DOI: 10.1016/j.matchemphys.2008.10.057. http://dx.doi.org/10.1016/j.matchemphys.2008.10.05710.1016/j.matchemphys.2008.10.057Search in Google Scholar

[4] Antonijevic, M. M., Alagic, S. C., Petrovic, M. B., Radovanovic, M. B., & Stamenkovic, A. T. (2009a). The influence of pH on electrochemical behavior of copper in presence of chloride ions. International Journal of Electrochemical Science, 4, 516–524. Search in Google Scholar

[5] Antonijevic, M. M., Bogdanovic, G. D., Radovanovic, M. B., Petrovic, M. B., & Stamenkovic, A. T. (2009b). Influence of pH and chloride ions on electrochemical behavior of brass in alkaline solution. International Journal of Electrochemical Science, 4, 654–661. Search in Google Scholar

[6] Antonijevic, M. M., Milic, S. M., Dimitrijevic, M. D., Petrovic, M. B., Radovanovic, M. B., & Stamenkovic, A. T. (2009c). The influence of pH and chlorides on electrochemical behavior of copper in the presence of benzotriazole. International Journal of Electrochemical Science, 4, 962–979. Search in Google Scholar

[7] Antonijević, M. M., Milić, S. M., & Petrović, M. B. (2009d). Films formed on copper surface in chloride media in the presence of azoles. Corrosion Science, 51, 1228–1237. DOI: 10.1016/j.corsci.2009.03.026. http://dx.doi.org/10.1016/j.corsci.2009.03.02610.1016/j.corsci.2009.03.026Search in Google Scholar

[8] Antonijevic, M. M., Milic, S. M., Radovanovic, M. B., Petrovic, M. B., & Stamenkovic, A. T. (2009e). Influence of pH and chlorides on electrochemical behavior of brass in presence of benzotriazole. International Journal of Electrochemical Science, 4, 1719–1734. Search in Google Scholar

[9] Antonijević, M. M., Milić, S. M., Šerbula, S. M., & Bogdanović, G. D. (2005). The influence of chloride ions and benzotriazole on the corrosion behavior of Cu37Zn brass in alkaline medium. Electrochimica Acta, 50, 3693–3701. DOI: 10.1016/j.electacta.2005.01.023. http://dx.doi.org/10.1016/j.electacta.2005.01.02310.1016/j.electacta.2005.01.023Search in Google Scholar

[10] Antonijevic, M. M., & Petrovic, M. B. (2008). Copper corrosion inhibitors. A review. International Journal of Electrochemical Science, 3, 1–28. Search in Google Scholar

[11] Assouli, B., Ait Chikh, Z. A., & Srhiri, A. (2001). Electrosynthesis of adherent poly(2-mercaptobenzimidazole) films on brass prepared in nonaqueous solvents. Polymer, 42, 2449–2454. DOI: 10.1016/s0032-3861(00)00578-4. http://dx.doi.org/10.1016/S0032-3861(00)00578-410.1016/S0032-3861(00)00578-4Search in Google Scholar

[12] Bertrand, G., Rocca, E., Savall, C., Rapin, C., Labrune, J. C., & Steinmetz, P. (2000). In-situ electrochemical atomic force microscopy studies of aqueous corrosion and inhibition of copper. Journal of Electroanalytical Chemistry, 489, 38–45. DOI: 10.1016/s0022-0728(00)00163-7. http://dx.doi.org/10.1016/S0022-0728(00)00163-710.1016/S0022-0728(00)00163-7Search in Google Scholar

[13] Christy, A. G., Lowe, A., Otieno-Alego, V., Stoll, M., & Webster, R. D. (2004). Voltammetric and Raman microspectroscopic studies on artificial copper pits grown in simulated potable water. Journal of Applied Electrochemistry, 34, 225–233. DOI: 10.1023/b:jach.0000009923.35223.f8. http://dx.doi.org/10.1023/B:JACH.0000009923.35223.f810.1023/B:JACH.0000009923.35223.f8Search in Google Scholar

[14] Edwards, M., Rehring, J., & Meyer, T. (1994). Inorganic anions and copper pitting. Corrosion, 50, 366–372. DOI: 10.5006/1.3294345. http://dx.doi.org/10.5006/1.329434510.5006/1.3294345Search in Google Scholar

[15] ELbakri, M., Touir, R., Ebn Touhami, M., Srhiri, A., & Benmessaoud, M. (2008). Electrosynthesis of adherent poly(3-amino-1,2,4-triazole) films on brass prepared in nonaqueous solvents. Corrosion Science, 50, 1538–1545. DOI: 10.1016/j.corsci.2008.02.014. http://dx.doi.org/10.1016/j.corsci.2008.02.01410.1016/j.corsci.2008.02.014Search in Google Scholar

[16] El-Naggar, M. M. (2000). Bis-triazole as a new corrosion inhibitor for copper in sulfate solution. A model for synergistic inhibition action. Journal of Materials Science, 35, 6189–6195. DOI: 10.1023/a:1026725110344. http://dx.doi.org/10.1023/A:102672511034410.1023/A:1026725110344Search in Google Scholar

[17] Feng, Y., Siow, K. S., Teo, W. K., Tan, K. L., & Hsieh, A. K. (1997). Corrosion mechanisms and products of copper in aqueous solutions at various pH values. Corrosion, 53, 389–398. DOI: 10.5006/1.3280482. http://dx.doi.org/10.5006/1.328048210.5006/1.3280482Search in Google Scholar

[18] Fitzgerald, K. P., Nairn, J., & Atrens, A. (1998). The chemistry of copper patination. Corrosion Science, 40, 2029–2050. DOI: 10.1016/s0010-938x(98)00093-6. http://dx.doi.org/10.1016/S0010-938X(98)00093-610.1016/S0010-938X(98)00093-6Search in Google Scholar

[19] Huynh, N., Bottle, S. E., Notoya, T., & Schweinsberg, D. P. (2002). Inhibition of copper corrosion by coatings of alkyl esters of carboxybenzotriazole. Corrosion Science, 44, 2583–2596. DOI: 10.1016/s0010-938x(02)00014-8. http://dx.doi.org/10.1016/S0010-938X(02)00014-810.1016/S0010-938X(02)00014-8Search in Google Scholar

[20] Ismail, K. M., Elsherif, R. M., & Badawy, W. A. (2004a). Effect of Zn and Pb contents on the electrochemical behavior of brass alloys in chloride-free neutral sulfate solutions. Electrochimica Acta, 49, 5151–5160. DOI: 10.1016/j.electacta.2004.06.028. http://dx.doi.org/10.1016/j.electacta.2004.06.02810.1016/j.electacta.2004.06.028Search in Google Scholar

[21] Ismail, K. M., Fathi, A. M., & Badawy, W. A. (2004b). The influence of Ni content on the stability of copper—nickel alloys in alkaline sulphate solutions. Journal of Applied Electrochemistry, 34, 823–831. DOI: 10.1023/b:jach.0000035612.66363.a3. http://dx.doi.org/10.1023/B:JACH.0000035612.66363.a310.1023/B:JACH.0000035612.66363.a3Search in Google Scholar

[22] Mankowski, G., Duthil, J. P., & Giusti, A. (1997). The pit morphology on copper in chloride- and sulphate-containing solutions. Corrosion Science, 39, 27–42. DOI: 10.1016/s0010-938x(96)00100-x. http://dx.doi.org/10.1016/S0010-938X(96)00100-X10.1016/S0010-938X(96)00100-XSearch in Google Scholar

[23] Martens, W., Frost, R. L., Kloprogge, J. T., & Williams, P. A. (2003). Raman spectroscopic study of the basic copper sulphates — implications for copper corrosion and ‘bronze disease’. Journal of Raman Spectroscopy, 34, 145–151. DOI: 10.1002/jrs.969. http://dx.doi.org/10.1002/jrs.96910.1002/jrs.969Search in Google Scholar

[24] Maurice, V., Klein, L. H., Strehblow, H. H., & Marcus, P. (2003). In situ STM study of the initial stages of anodic oxidation of Cu(111) in the presence of sulfates. Journal of the Electrochemical Society, 150, B316–B324. DOI: 10.1149/1.1576225. http://dx.doi.org/10.1149/1.157622510.1149/1.1576225Search in Google Scholar

[25] Milić, S. M., & Antonijević, M. M. (2009). Some aspects of copper corrosion in presence of benzotriazole and chloride ions. Corrosion Science, 51, 28–34. DOI: 10.1016/j.corsci.2008.10.007. http://dx.doi.org/10.1016/j.corsci.2008.10.00710.1016/j.corsci.2008.10.007Search in Google Scholar

[26] Milić, S. M., Antonijević, M. M., Šerbula, S. M., & Bogdanović, G. D. (2008). Influence of benzotriazole on corrosion behaviour of CuAlNiSi alloy in alkaline medium. Corrosion Engineering, Science and Technology, 43, 30–37. DOI: 10.1179/174327808x286329. http://dx.doi.org/10.1179/174327808X28632910.1179/174327808X286329Search in Google Scholar

[27] Modestov, A. D., Zhou, G. D., Ge, H. H., & Loo, B. H. (1995). A study by voltammetry and the photocurrent response method of copper electrode behavior in acidic and alkaline solutions containing chloride ions. Journal of Electroanalytical Chemistry, 380, 63–68. DOI: 10.1016/0022-0728(94)03577-p. http://dx.doi.org/10.1016/0022-0728(94)03577-P10.1016/0022-0728(94)03577-PSearch in Google Scholar

[28] Noli, F., Misaelides, P., Hatzidimitrou, A., Pavlidou, E., & Kokkoris, M. (2003). Investigation of artificially produced and natural copper patina layers. Journal of Materials Chemistry, 13, 114–120. DOI: 10.1039/b206773k. http://dx.doi.org/10.1039/b206773k10.1039/b206773kSearch in Google Scholar

[29] Perrin, F. X., Wery, M., & Pagetti, J. (1997). Electropolymerization of 2-hydroxybenzothiazole (2-OHBT) in water-methanol media: electrochemical behavior in NaCl (3%) solution. Journal of Applied Electrochemistry, 27, 821–830. DOI: 10.1023/a:1018424912752. http://dx.doi.org/10.1023/A:101842491275210.1023/A:1018424912752Search in Google Scholar

[30] Qafsaoui, W., Blanc, Ch., Roques, J., Pebère, N., Srhiri, A., Mijoule, C., & Mankowski, G. (2001). Pitting corrosion of copper in sulphate solutions: inhibitive effect of different triazole derivative inhibitors. Journal of Applied Electrochemistry, 31, 223–231. DOI: 10.1023/a:1004127706145. http://dx.doi.org/10.1023/A:100412770614510.1023/A:1004127706145Search in Google Scholar

[31] Scendo, M. (2007a). Inhibitive action of the purine and adenine for copper corrosion in sulphate solutions. Corrosion Science, 49, 2985–3000. DOI: 10.1016/j.corsci.2007.01.002. http://dx.doi.org/10.1016/j.corsci.2007.01.00210.1016/j.corsci.2007.01.002Search in Google Scholar

[32] Scendo, M. (2007b). The effect of purine on the corrosion of copper in chloride solutions. Corrosion Science, 49, 373–390. DOI: 10.1016/j.corsci.2006.06.022. http://dx.doi.org/10.1016/j.corsci.2006.06.02210.1016/j.corsci.2006.06.022Search in Google Scholar

[33] Scendo, M. (2007c). Corrosion inhibition of copper by purine or adenine in sulphate solutions. Corrosion Science, 49, 3953–3968. DOI: 10.1016/j.corsci.2007.03.037. 10.1016/j.corsci.2007.03.037Search in Google Scholar

[34] Scendo, M. (2008). Inhibition of copper corrosion in sodium nitrate solutions with nontoxic inhibitors. Corrosion Science, 50, 1584–1592. DOI: 10.1016/j.corsci.2008.02.015. http://dx.doi.org/10.1016/j.corsci.2008.02.01510.1016/j.corsci.2008.02.015Search in Google Scholar

[35] Sidot, E., Souissi, N., Bousselmi, L., Triki, E., & Robbiola, L. (2006). Study of the corrosion behavior of Cu-10Sn bronze in aerated Na2SO4 aqueous solution. Corrosion Science, 48, 2241–2257. DOI: 10.1016/j.corsci.2005.08.020. http://dx.doi.org/10.1016/j.corsci.2005.08.02010.1016/j.corsci.2005.08.020Search in Google Scholar

[36] Souto, R. M., Gonzalez, S., Salvarezza, R. C., & Arvia, A. J. (1994). Kinetics of copper passivation and pitting corrosion in Na2SO4 containing dilute NaOH aqueous solution. Electrochimica Acta, 39, 2619–2628. DOI: 10.1016/0013-4686(94)00204-5. http://dx.doi.org/10.1016/0013-4686(94)00204-510.1016/0013-4686(94)00204-5Search in Google Scholar

[37] Tromans, D., & Silva, J. C. (1997). Behavior of copper in acidic sulfate solution: Comparison with acidic chloride. Corrosion, 53, 171–178. DOI: 10.5006/1.3280457. http://dx.doi.org/10.5006/1.328045710.5006/1.3280457Search in Google Scholar

[38] Tromans, D., & Sun, R. H. (1992). Anodic behavior of copper in weakly alkaline solutions. Journal of the Electrochemical Society, 139, 1945–1951. DOI: 10.1149/1.2069527. http://dx.doi.org/10.1149/1.206952710.1149/1.2069527Search in Google Scholar

[39] Yan, Y., Li, W., Cai, L., & Hou, B. (2008). Electrochemical and quantum chemical study of purines as corrosion inhibitors for mild steel in 1 M HCl solution. Electrochimica Acta, 53, 5953–5960. DOI: 10.1016/j.electacta.2008.03.065. http://dx.doi.org/10.1016/j.electacta.2008.03.06510.1016/j.electacta.2008.03.065Search in Google Scholar

Published Online: 2012-6-22
Published in Print: 2012-7-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0174-y/html
Scroll to top button