Incorporation of β-(1,6)-linked glucooligosaccharides (pustulooligosaccharides) into plant cell wall structures
-
Zuzana Zemková
, Soňa Garajová
Abstract
Protein extract of germinating nasturtium (Tropaeolum majus) seeds containing xyloglucan endotransglycosylase (xyloglucan xyloglucosyl transferase, EC 2.4.1.207, abbreviated XET) exhibited the heterotransglycosylating activity with donor/acceptor substrate pair xyloglucan/sulphorhodamine labelled pustulooligosaccharides (XG/PUOS-SR) in a dot blot assay. The heterotransglycosylating activity was confirmed by the substrate-product changes during transglycosylation by HPLC size-exclusion chromatography. Another donor substrate capable of being coupled with PUOS-SR was cellulose, probably owing to its structural similarity to xyloglucan. Surprisingly, microscopic comparison of the incorporation of the labelled xyloglucan nonasaccharide XGO9-SR (specific substrate for XET) and PUOS-SR into the cell wall structures clearly showed differences in their binding to specific cell structures: the primary cell wall and the plasma membrane. These findings indicate the existence in nasturtium of XETs with different localisation, substrate specificity and, probably, function.
[1] Ait Mohand, F., & Farkaš, V. (2006). Screening for heterotransglycosylating activities in extracts from nasturtium (Tropaeolum majus). Carbohydrate Research, 341, 577–581. DOI: 10.1016/j.carres.2006.01.018. http://dx.doi.org/10.1016/j.carres.2006.01.01810.1016/j.carres.2006.01.018Search in Google Scholar
[2] Baumann, M. J., Eklöf, J. M., Michel, G., Kallas, Å. M., Teeri, T. T., Czjzek, M., & Brumer, H. (2007). Structural evidence for the evolution of xyloglucanase activity from xyloglucan endo-transglycosylases: Biological implications for cell wall metabolism. The Plant Cell, 19, 1947–1963. DOI: 10.1105/tpc.107.051391. http://dx.doi.org/10.1105/tpc.107.05139110.1105/tpc.107.051391Search in Google Scholar
[3] Cabib, E., Blanco, N., Grau, C., Rodrígues-Peña, J. M., & Arroyo, J. (2007). Crh1p and Crh2p are required for the crosslinking of chitin to β(1–6)glucan in the Saccharomyces cerevisiae cell wall. Molecular Microbiology, 63, 921–395. DOI: 10.1111/j.1365-2958.2006.05565.x. http://dx.doi.org/10.1111/j.1365-2958.2006.05565.x10.1111/j.1365-2958.2006.05565.xSearch in Google Scholar
[4] Cabib, E., Farkaš, V., Kosík, O., Blanco, N., Arroyo, J., & McPhie, P. (2008). Assembly of the yeast cell wall. Crh1p and Crh2p act as transglycosylases in vivo and in vitro. The Journal of Biological Chemistry, 283, 29859–29872. DOI: 10.1074/jbc.M804274200. http://dx.doi.org/10.1074/jbc.M80427420010.1074/jbc.M804274200Search in Google Scholar
[5] Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V., & Henrissat, B. (2009). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Research, 37, 233–238. DOI: 10.1093/nar/gkn663. http://dx.doi.org/10.1093/nar/gkn66310.1093/nar/gkn663Search in Google Scholar
[6] Carroll, A., & Specht, C. D. (2011). Understanding plant cellulose synthases through a comprehensive investigation of the cellulose synthase family sequences. Frontiers in Plant Science, 2, 5. DOI: 10.3389/fpls.2011.00005. http://dx.doi.org/10.3389/fpls.2011.0000510.3389/fpls.2011.00005Search in Google Scholar
[7] Eklöf, J. M., & Brumer, H. (2010). The XTH gene family: An update on enzyme structure, function, and phylogeny in xyloglucan remodeling. Plant Physiology, 153, 456–466. DOI: 10.1104/pp.110.156844. http://dx.doi.org/10.1104/pp.110.15684410.1104/pp.110.156844Search in Google Scholar
[8] Farkas, V., Sulova, Z., Stratilova, E., Hanna, R., & Maclachlan, G. (1992). Cleavage of xyloglucan nasturtium seed xyloglucanase and transglycosylation to xyloglucan subunit oligosaccharides. Archives of Biochemistry and Biophysics, 298, 365–370. DOI: 10.1016/0003-9861(92)90423-t. http://dx.doi.org/10.1016/0003-9861(92)90423-T10.1016/0003-9861(92)90423-TSearch in Google Scholar
[9] Fry, S. C. (1997). Novel ‘dot-blot’ assays for glycosyltransferases and glycosylhydrolases: optimisation for xyloglucan endotransglycosylase (XET) activity. The Plant Journal, 11, 1141–1150. DOI: 10.1046/j.1365-313x.1997.11051141.x. http://dx.doi.org/10.1046/j.1365-313X.1997.11051141.x10.1046/j.1365-313X.1997.11051141.xSearch in Google Scholar
[10] Fry, S. C., Mohler, K. E., Nesselrode, B. H. W. A., & Frankova, L. (2008). Mixed-linkage β-glucan: xyloglucan endotransglucosylase, a novel wall-remodelling enzyme from Equisetum (horsetails) and charophytic algae. The Plant Journal, 55, 240–252. DOI: 10.1111/j.1365-313x.2008.03504.x. http://dx.doi.org/10.1111/j.1365-313X.2008.03504.x10.1111/j.1365-313X.2008.03504.xSearch in Google Scholar PubMed
[11] Fry, S. C., Smith, R. C., Renwick, K. F., Martin, D. J., Hodge, S. K., & Mathews, K. J. (1992). Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochemistry, 282, 821–826. 10.1042/bj2820821Search in Google Scholar PubMed PubMed Central
[12] Fry, S. C., York, W. S., Albersheim, P., Darvill, A., Hayashi, T., Joseleaus, J. P., Kato, Y., Lorences, E. P., Mclachlan, G. A., McNeil, M., Mort, A. J., Reid, J. S. G., Seitz, H. U., Selvendran, R. R., Voragen, A. G. J., & White, A. R. (1993). An unambiguous nomenclature for xyloglucan-derived oligosaccharides. Physiologia Plantarum, 89, 1–3. DOI: 10.1111/j.1399-3054.1993.tb01778.x. http://dx.doi.org/10.1111/j.1399-3054.1993.tb01778.x10.1111/j.1399-3054.1993.tb01778.xSearch in Google Scholar
[13] Hrmova, M., Farkas, V., Harvey, A. J., Lahnstein, J., Wischmann, B., Kaewthai, N., Ezcurra, I., Teeri, T. T., & Fincher, G. B. (2009). Substrate specificity and catalytic mechanism of a xyloglucan xyloglucosyl transferase HvXET6 from barley (Hordeum vulgare L.). FEBS Journal, 276, 437–456. DOI: 10.1111/j.1742-4658.2008.06791.x. http://dx.doi.org/10.1111/j.1742-4658.2008.06791.x10.1111/j.1742-4658.2008.06791.xSearch in Google Scholar PubMed
[14] Hrmova, M., Farkas, V., Lahnstein, J., & Fincher, G. B. (2007). A barley xyloglucan xyloglucosyl transferase covalently links xyloglucan, cellulosic substrates, and (1,3;1,4)-β-d-glucans. The Journal of Biological Chemistry, 282, 12951–12962. DOI: 10.1074/jbc.m611487200. http://dx.doi.org/10.1074/jbc.M61148720010.1074/jbc.M611487200Search in Google Scholar PubMed
[15] Ibatullin, F. M., Banasiak, A., Baumann, M. J., Greffe, L., Takahashi, J., Mellerowicz, E. J., & Brumer, H. (2009). A real-time fluorogenic assay for the visualization of glycoside hydrolase activity in planta. Plant Physiology, 151, 1741–1750. DOI: 10.1104/pp.109.147439. http://dx.doi.org/10.1104/pp.109.14743910.1104/pp.109.147439Search in Google Scholar PubMed PubMed Central
[16] Klis, F. M., Boorsma, A., & De Groot, P. W. J. (2006). Cell wall construction in Saccharomyces cerevisiae. Yeast, 23, 185–202. DOI: 10.1002/yea.1349. http://dx.doi.org/10.1002/yea.134910.1002/yea.1349Search in Google Scholar PubMed
[17] Kosík, O., & Farkaš, V. (2008). One-pot fluorescent labeling of xyloglucan oligosaccharides with sulforhodamine. Analytical Biochemistry, 375, 232–236. DOI: 10.1016/j.ab.2007.11.025. http://dx.doi.org/10.1016/j.ab.2007.11.02510.1016/j.ab.2007.11.025Search in Google Scholar PubMed
[18] Kosík, O., Garajová, S., Matulová, M., Řehulka, P., Stratilová, E., & Farkaš, V. (2011). Effect of the label of oligosaccharide acceptors on the kinetic parameters of nasturtium seed xyloglucan endotransglycosylase (XET). Carbohydrate Research, 346, 357–361. DOI: 10.1016/j.carres.2010.09.004. http://dx.doi.org/10.1016/j.carres.2010.09.00410.1016/j.carres.2010.09.004Search in Google Scholar PubMed
[19] Lesage, G., & Bussey, H. (2006). Cell wall assembly in Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 70, 317–343. DOI: 10.1128/mmbr.00038-05. http://dx.doi.org/10.1128/MMBR.00038-0510.1128/MMBR.00038-05Search in Google Scholar PubMed PubMed Central
[20] Mark, P., Baumann, M. J., Eklöf, J. M., Gullfot, F., Michel, G., Kallas, Å. M., Teeri, T. T., Brumer, H., & Czjzek, M. (2009). Analysis of nasturtium TmNXG1 complexes by crystallography and molecular dynamics provides detailed insight into substrate recognition by family GH16 xyloglucan endo-transglycosylases and endo-hydrolases. Proteins: Structure, Function, and Bioinformatics, 75, 820–836. DOI: 10.1002/prot.22291. http://dx.doi.org/10.1002/prot.2229110.1002/prot.22291Search in Google Scholar PubMed
[21] Nishikubo, N., Awano, T., Banasiak, A., Bourquin, V., Ibatullin, F., Funada, R., Brumer, H., Teeri, T. T., Hayashi, T., Sundberg, B., & Mellerowicz, E. J. (2007). Xyloglucan endo-transglycosylase (XET) functions in gelatinous layers of tension wood fibers in poplar-a glimpse into the mechanism of the balancing act of trees. Plant & Cell Physiology, 48, 843–855. DOI: 10.1093/pcp/pcm055. http://dx.doi.org/10.1093/pcp/pcm05510.1093/pcp/pcm055Search in Google Scholar
[22] Nishitani, K. (1997). The role of endoxyloglucan transferase in the organization of plant cell walls. International Review of Cytology, 173, 157–206. DOI: 10.1016/s0074-7696(08)62477-8. http://dx.doi.org/10.1016/S0074-7696(08)62477-810.1016/S0074-7696(08)62477-8Search in Google Scholar
[23] Nishitani, K., & Tominaga, R. (1992). Endo-xyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule. The Journal of Biological Chemistry, 267, 21058–21064. 10.1016/S0021-9258(19)36797-3Search in Google Scholar
[24] Popper, Z. A., & Fry, S. C. (2008). Xyloglucan-pectin linkages are formed intra-protoplasmically contribute to wallassembly, and remain stable in the cell wall. Planta, 227, 781–794. DOI: 10.1007/s00425-007-0656-2. http://dx.doi.org/10.1007/s00425-007-0656-210.1007/s00425-007-0656-2Search in Google Scholar PubMed
[25] Rose, J. K. C., Braam, J., Fry, S. C., & Nishitani, K. (2002). The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: Current perspectives and a new unifying nomenclature. Plant & Cell Physiology, 43, 1421–1435. DOI: 10.1093/pcp/pcf171. http://dx.doi.org/10.1093/pcp/pcf17110.1093/pcp/pcf171Search in Google Scholar PubMed
[26] Schröder, R., Atkinson, R. G., & Redgwell, R. J. (2009). Reinterpreting the role of endo-β-mannanases as mannan endotransglycosylase/hydrolases in the plant cell wall. Annals of Botany, 104, 197–204. DOI: 10.1093/aob/mcp120. http://dx.doi.org/10.1093/aob/mcp12010.1093/aob/mcp120Search in Google Scholar PubMed PubMed Central
[27] Sinnott, M. L. (1990). Catalytic mechanism of enzymatic glycosyl transfer. Chemical Reviews, 90, 1171–1202. DOI: 10.1021/cr00105a006. http://dx.doi.org/10.1021/cr00105a00610.1021/cr00105a006Search in Google Scholar
[28] Stratilova, E., Ait-Mohand, F., Řehulka, P., Garajová, S., Flodrová, D., Řehulková, H., & Farkaš, V. (2010). Xyloglucan endotransglycosylases (XETs) from germinating nasturtium (Tropaeolum majus) seeds: Isolation and characterization of the major form. Plant Physiology and Biochemistry, 48, 207–215. DOI: 10.1016/j.plaphy.2010.01.016. http://dx.doi.org/10.1016/j.plaphy.2010.01.01610.1016/j.plaphy.2010.01.016Search in Google Scholar PubMed
[29] Sulová, Z., Lednická, M., & Farkaš, V. (1995). A colorimetric assay for xyloglucan-endotransglycosylase from germinating seeds. Analytical Biochemistry, 229, 80–85. DOI: 10.1006/abio.1995.1381. http://dx.doi.org/10.1006/abio.1995.138110.1006/abio.1995.1381Search in Google Scholar PubMed
[30] Vissenberg, K., Martinez-Vilchez, I. M., Verbelen, J. P., Miller, J. G., & Fry, S. C. (2000). In vivo colocalization of xyloglucan endotransglycosylase activity and its donor substrate in the elongation zone of Arabidopsis roots. The Plant Cell, 12, 1229–1238. 10.1105/tpc.12.7.1229Search in Google Scholar PubMed PubMed Central
© 2012 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- 5th Meeting on Chemistry & Life 2011
- Induction of Cryptococcus laurentii α-galactosidase
- Incorporation of β-(1,6)-linked glucooligosaccharides (pustulooligosaccharides) into plant cell wall structures
- Metal-metabolomics of microalga Chlorella sorokiniana growing in selenium- and iodine-enriched media
- Metabolomic approach to Alzheimer’s disease diagnosis based on mass spectrometry
- Seasonal changes of Rubisco content and activity in Fagus sylvatica and Picea abies affected by elevated CO2 concentration
- Identification and determination of relatedness of lactobacilli using different DNA amplification methods
- Production of Geotrichum candidum polygalacturonases via solid state fermentation on grape pomace
- Monitoring of yeast population isolated during spontaneous fermentation of Moravian wine
- Biodegradable polyhydroxybutyrate as a polyol for elastomeric polyurethanes
- Conformational changes in humic acids in aqueous solutions
- Preparation and properties of cementitious composites for geothermal applications
Articles in the same Issue
- 5th Meeting on Chemistry & Life 2011
- Induction of Cryptococcus laurentii α-galactosidase
- Incorporation of β-(1,6)-linked glucooligosaccharides (pustulooligosaccharides) into plant cell wall structures
- Metal-metabolomics of microalga Chlorella sorokiniana growing in selenium- and iodine-enriched media
- Metabolomic approach to Alzheimer’s disease diagnosis based on mass spectrometry
- Seasonal changes of Rubisco content and activity in Fagus sylvatica and Picea abies affected by elevated CO2 concentration
- Identification and determination of relatedness of lactobacilli using different DNA amplification methods
- Production of Geotrichum candidum polygalacturonases via solid state fermentation on grape pomace
- Monitoring of yeast population isolated during spontaneous fermentation of Moravian wine
- Biodegradable polyhydroxybutyrate as a polyol for elastomeric polyurethanes
- Conformational changes in humic acids in aqueous solutions
- Preparation and properties of cementitious composites for geothermal applications