Home Incorporation of β-(1,6)-linked glucooligosaccharides (pustulooligosaccharides) into plant cell wall structures
Article
Licensed
Unlicensed Requires Authentication

Incorporation of β-(1,6)-linked glucooligosaccharides (pustulooligosaccharides) into plant cell wall structures

  • Zuzana Zemková EMAIL logo , Soňa Garajová , Dana Flodrová , Pavel Řehulka , Ivan Zelko , Renáta Vadkertiová , Vladimír Farkaš and Eva Stratilová
Published/Copyright: June 22, 2012
Become an author with De Gruyter Brill

Abstract

Protein extract of germinating nasturtium (Tropaeolum majus) seeds containing xyloglucan endotransglycosylase (xyloglucan xyloglucosyl transferase, EC 2.4.1.207, abbreviated XET) exhibited the heterotransglycosylating activity with donor/acceptor substrate pair xyloglucan/sulphorhodamine labelled pustulooligosaccharides (XG/PUOS-SR) in a dot blot assay. The heterotransglycosylating activity was confirmed by the substrate-product changes during transglycosylation by HPLC size-exclusion chromatography. Another donor substrate capable of being coupled with PUOS-SR was cellulose, probably owing to its structural similarity to xyloglucan. Surprisingly, microscopic comparison of the incorporation of the labelled xyloglucan nonasaccharide XGO9-SR (specific substrate for XET) and PUOS-SR into the cell wall structures clearly showed differences in their binding to specific cell structures: the primary cell wall and the plasma membrane. These findings indicate the existence in nasturtium of XETs with different localisation, substrate specificity and, probably, function.

[1] Ait Mohand, F., & Farkaš, V. (2006). Screening for heterotransglycosylating activities in extracts from nasturtium (Tropaeolum majus). Carbohydrate Research, 341, 577–581. DOI: 10.1016/j.carres.2006.01.018. http://dx.doi.org/10.1016/j.carres.2006.01.01810.1016/j.carres.2006.01.018Search in Google Scholar

[2] Baumann, M. J., Eklöf, J. M., Michel, G., Kallas, Å. M., Teeri, T. T., Czjzek, M., & Brumer, H. (2007). Structural evidence for the evolution of xyloglucanase activity from xyloglucan endo-transglycosylases: Biological implications for cell wall metabolism. The Plant Cell, 19, 1947–1963. DOI: 10.1105/tpc.107.051391. http://dx.doi.org/10.1105/tpc.107.05139110.1105/tpc.107.051391Search in Google Scholar

[3] Cabib, E., Blanco, N., Grau, C., Rodrígues-Peña, J. M., & Arroyo, J. (2007). Crh1p and Crh2p are required for the crosslinking of chitin to β(1–6)glucan in the Saccharomyces cerevisiae cell wall. Molecular Microbiology, 63, 921–395. DOI: 10.1111/j.1365-2958.2006.05565.x. http://dx.doi.org/10.1111/j.1365-2958.2006.05565.x10.1111/j.1365-2958.2006.05565.xSearch in Google Scholar

[4] Cabib, E., Farkaš, V., Kosík, O., Blanco, N., Arroyo, J., & McPhie, P. (2008). Assembly of the yeast cell wall. Crh1p and Crh2p act as transglycosylases in vivo and in vitro. The Journal of Biological Chemistry, 283, 29859–29872. DOI: 10.1074/jbc.M804274200. http://dx.doi.org/10.1074/jbc.M80427420010.1074/jbc.M804274200Search in Google Scholar

[5] Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V., & Henrissat, B. (2009). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Research, 37, 233–238. DOI: 10.1093/nar/gkn663. http://dx.doi.org/10.1093/nar/gkn66310.1093/nar/gkn663Search in Google Scholar

[6] Carroll, A., & Specht, C. D. (2011). Understanding plant cellulose synthases through a comprehensive investigation of the cellulose synthase family sequences. Frontiers in Plant Science, 2, 5. DOI: 10.3389/fpls.2011.00005. http://dx.doi.org/10.3389/fpls.2011.0000510.3389/fpls.2011.00005Search in Google Scholar

[7] Eklöf, J. M., & Brumer, H. (2010). The XTH gene family: An update on enzyme structure, function, and phylogeny in xyloglucan remodeling. Plant Physiology, 153, 456–466. DOI: 10.1104/pp.110.156844. http://dx.doi.org/10.1104/pp.110.15684410.1104/pp.110.156844Search in Google Scholar

[8] Farkas, V., Sulova, Z., Stratilova, E., Hanna, R., & Maclachlan, G. (1992). Cleavage of xyloglucan nasturtium seed xyloglucanase and transglycosylation to xyloglucan subunit oligosaccharides. Archives of Biochemistry and Biophysics, 298, 365–370. DOI: 10.1016/0003-9861(92)90423-t. http://dx.doi.org/10.1016/0003-9861(92)90423-T10.1016/0003-9861(92)90423-TSearch in Google Scholar

[9] Fry, S. C. (1997). Novel ‘dot-blot’ assays for glycosyltransferases and glycosylhydrolases: optimisation for xyloglucan endotransglycosylase (XET) activity. The Plant Journal, 11, 1141–1150. DOI: 10.1046/j.1365-313x.1997.11051141.x. http://dx.doi.org/10.1046/j.1365-313X.1997.11051141.x10.1046/j.1365-313X.1997.11051141.xSearch in Google Scholar

[10] Fry, S. C., Mohler, K. E., Nesselrode, B. H. W. A., & Frankova, L. (2008). Mixed-linkage β-glucan: xyloglucan endotransglucosylase, a novel wall-remodelling enzyme from Equisetum (horsetails) and charophytic algae. The Plant Journal, 55, 240–252. DOI: 10.1111/j.1365-313x.2008.03504.x. http://dx.doi.org/10.1111/j.1365-313X.2008.03504.x10.1111/j.1365-313X.2008.03504.xSearch in Google Scholar PubMed

[11] Fry, S. C., Smith, R. C., Renwick, K. F., Martin, D. J., Hodge, S. K., & Mathews, K. J. (1992). Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochemistry, 282, 821–826. 10.1042/bj2820821Search in Google Scholar PubMed PubMed Central

[12] Fry, S. C., York, W. S., Albersheim, P., Darvill, A., Hayashi, T., Joseleaus, J. P., Kato, Y., Lorences, E. P., Mclachlan, G. A., McNeil, M., Mort, A. J., Reid, J. S. G., Seitz, H. U., Selvendran, R. R., Voragen, A. G. J., & White, A. R. (1993). An unambiguous nomenclature for xyloglucan-derived oligosaccharides. Physiologia Plantarum, 89, 1–3. DOI: 10.1111/j.1399-3054.1993.tb01778.x. http://dx.doi.org/10.1111/j.1399-3054.1993.tb01778.x10.1111/j.1399-3054.1993.tb01778.xSearch in Google Scholar

[13] Hrmova, M., Farkas, V., Harvey, A. J., Lahnstein, J., Wischmann, B., Kaewthai, N., Ezcurra, I., Teeri, T. T., & Fincher, G. B. (2009). Substrate specificity and catalytic mechanism of a xyloglucan xyloglucosyl transferase HvXET6 from barley (Hordeum vulgare L.). FEBS Journal, 276, 437–456. DOI: 10.1111/j.1742-4658.2008.06791.x. http://dx.doi.org/10.1111/j.1742-4658.2008.06791.x10.1111/j.1742-4658.2008.06791.xSearch in Google Scholar PubMed

[14] Hrmova, M., Farkas, V., Lahnstein, J., & Fincher, G. B. (2007). A barley xyloglucan xyloglucosyl transferase covalently links xyloglucan, cellulosic substrates, and (1,3;1,4)-β-d-glucans. The Journal of Biological Chemistry, 282, 12951–12962. DOI: 10.1074/jbc.m611487200. http://dx.doi.org/10.1074/jbc.M61148720010.1074/jbc.M611487200Search in Google Scholar PubMed

[15] Ibatullin, F. M., Banasiak, A., Baumann, M. J., Greffe, L., Takahashi, J., Mellerowicz, E. J., & Brumer, H. (2009). A real-time fluorogenic assay for the visualization of glycoside hydrolase activity in planta. Plant Physiology, 151, 1741–1750. DOI: 10.1104/pp.109.147439. http://dx.doi.org/10.1104/pp.109.14743910.1104/pp.109.147439Search in Google Scholar PubMed PubMed Central

[16] Klis, F. M., Boorsma, A., & De Groot, P. W. J. (2006). Cell wall construction in Saccharomyces cerevisiae. Yeast, 23, 185–202. DOI: 10.1002/yea.1349. http://dx.doi.org/10.1002/yea.134910.1002/yea.1349Search in Google Scholar PubMed

[17] Kosík, O., & Farkaš, V. (2008). One-pot fluorescent labeling of xyloglucan oligosaccharides with sulforhodamine. Analytical Biochemistry, 375, 232–236. DOI: 10.1016/j.ab.2007.11.025. http://dx.doi.org/10.1016/j.ab.2007.11.02510.1016/j.ab.2007.11.025Search in Google Scholar PubMed

[18] Kosík, O., Garajová, S., Matulová, M., Řehulka, P., Stratilová, E., & Farkaš, V. (2011). Effect of the label of oligosaccharide acceptors on the kinetic parameters of nasturtium seed xyloglucan endotransglycosylase (XET). Carbohydrate Research, 346, 357–361. DOI: 10.1016/j.carres.2010.09.004. http://dx.doi.org/10.1016/j.carres.2010.09.00410.1016/j.carres.2010.09.004Search in Google Scholar PubMed

[19] Lesage, G., & Bussey, H. (2006). Cell wall assembly in Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 70, 317–343. DOI: 10.1128/mmbr.00038-05. http://dx.doi.org/10.1128/MMBR.00038-0510.1128/MMBR.00038-05Search in Google Scholar PubMed PubMed Central

[20] Mark, P., Baumann, M. J., Eklöf, J. M., Gullfot, F., Michel, G., Kallas, Å. M., Teeri, T. T., Brumer, H., & Czjzek, M. (2009). Analysis of nasturtium TmNXG1 complexes by crystallography and molecular dynamics provides detailed insight into substrate recognition by family GH16 xyloglucan endo-transglycosylases and endo-hydrolases. Proteins: Structure, Function, and Bioinformatics, 75, 820–836. DOI: 10.1002/prot.22291. http://dx.doi.org/10.1002/prot.2229110.1002/prot.22291Search in Google Scholar PubMed

[21] Nishikubo, N., Awano, T., Banasiak, A., Bourquin, V., Ibatullin, F., Funada, R., Brumer, H., Teeri, T. T., Hayashi, T., Sundberg, B., & Mellerowicz, E. J. (2007). Xyloglucan endo-transglycosylase (XET) functions in gelatinous layers of tension wood fibers in poplar-a glimpse into the mechanism of the balancing act of trees. Plant & Cell Physiology, 48, 843–855. DOI: 10.1093/pcp/pcm055. http://dx.doi.org/10.1093/pcp/pcm05510.1093/pcp/pcm055Search in Google Scholar

[22] Nishitani, K. (1997). The role of endoxyloglucan transferase in the organization of plant cell walls. International Review of Cytology, 173, 157–206. DOI: 10.1016/s0074-7696(08)62477-8. http://dx.doi.org/10.1016/S0074-7696(08)62477-810.1016/S0074-7696(08)62477-8Search in Google Scholar

[23] Nishitani, K., & Tominaga, R. (1992). Endo-xyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule. The Journal of Biological Chemistry, 267, 21058–21064. 10.1016/S0021-9258(19)36797-3Search in Google Scholar

[24] Popper, Z. A., & Fry, S. C. (2008). Xyloglucan-pectin linkages are formed intra-protoplasmically contribute to wallassembly, and remain stable in the cell wall. Planta, 227, 781–794. DOI: 10.1007/s00425-007-0656-2. http://dx.doi.org/10.1007/s00425-007-0656-210.1007/s00425-007-0656-2Search in Google Scholar PubMed

[25] Rose, J. K. C., Braam, J., Fry, S. C., & Nishitani, K. (2002). The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: Current perspectives and a new unifying nomenclature. Plant & Cell Physiology, 43, 1421–1435. DOI: 10.1093/pcp/pcf171. http://dx.doi.org/10.1093/pcp/pcf17110.1093/pcp/pcf171Search in Google Scholar PubMed

[26] Schröder, R., Atkinson, R. G., & Redgwell, R. J. (2009). Reinterpreting the role of endo-β-mannanases as mannan endotransglycosylase/hydrolases in the plant cell wall. Annals of Botany, 104, 197–204. DOI: 10.1093/aob/mcp120. http://dx.doi.org/10.1093/aob/mcp12010.1093/aob/mcp120Search in Google Scholar PubMed PubMed Central

[27] Sinnott, M. L. (1990). Catalytic mechanism of enzymatic glycosyl transfer. Chemical Reviews, 90, 1171–1202. DOI: 10.1021/cr00105a006. http://dx.doi.org/10.1021/cr00105a00610.1021/cr00105a006Search in Google Scholar

[28] Stratilova, E., Ait-Mohand, F., Řehulka, P., Garajová, S., Flodrová, D., Řehulková, H., & Farkaš, V. (2010). Xyloglucan endotransglycosylases (XETs) from germinating nasturtium (Tropaeolum majus) seeds: Isolation and characterization of the major form. Plant Physiology and Biochemistry, 48, 207–215. DOI: 10.1016/j.plaphy.2010.01.016. http://dx.doi.org/10.1016/j.plaphy.2010.01.01610.1016/j.plaphy.2010.01.016Search in Google Scholar PubMed

[29] Sulová, Z., Lednická, M., & Farkaš, V. (1995). A colorimetric assay for xyloglucan-endotransglycosylase from germinating seeds. Analytical Biochemistry, 229, 80–85. DOI: 10.1006/abio.1995.1381. http://dx.doi.org/10.1006/abio.1995.138110.1006/abio.1995.1381Search in Google Scholar PubMed

[30] Vissenberg, K., Martinez-Vilchez, I. M., Verbelen, J. P., Miller, J. G., & Fry, S. C. (2000). In vivo colocalization of xyloglucan endotransglycosylase activity and its donor substrate in the elongation zone of Arabidopsis roots. The Plant Cell, 12, 1229–1238. 10.1105/tpc.12.7.1229Search in Google Scholar PubMed PubMed Central

Published Online: 2012-6-22
Published in Print: 2012-9-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 26.9.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0167-x/html
Scroll to top button