Home Tungstate sulfuric acid: preparation, characterization, and application in catalytic synthesis of novel benzimidazoles
Article
Licensed
Unlicensed Requires Authentication

Tungstate sulfuric acid: preparation, characterization, and application in catalytic synthesis of novel benzimidazoles

  • Bahador Karami EMAIL logo , Saeed Khodabakhshi and Zahra Haghighijou
Published/Copyright: June 22, 2012
Become an author with De Gruyter Brill

Abstract

Tungstate sulfuric acid (TSA) was prepared, characterized, and applied for direct synthesis of novel and known benzimidazoles through a condensation reaction of o-phenylenediamines with orthoesters under solvent-free conditions. TSA was characterized by powdered X-ray diffraction (XRD), X-ray fluorescence (XRF), and FTIR spectroscopy. This novel and eco-friendly method is very cheap and has many advantages such as excellent yields, recyclable and eco-friendly catalyst, and simple work-up procedure.

[1] Barker, H. A., Smyth, R. D., Weissbach, H., Toohey, J. I., Ladd, J. N., & Volcani, B. E. (1960). Isolation and properties of crystalline cobamide coenzymes containing benzimidazole or 5,6-dimethylbenzimidazole. The Journal of Biological Chemistry, 235, 480–488. 10.1016/S0021-9258(18)69550-XSearch in Google Scholar

[2] Buchstaller, H. P., Burgdorf, L., Finsinger, D., Stieber, F., Sirrenberg, C., Amendt, C., Grell, M., Zenke, F., & Krier, M. (2011). Design and synthesis of isoquinolines and benzimidazoles as RAF kinase inhibitors. Bioorganic & Medicinal Chemistry Letters, 21, 2264–2269. DOI: 10.1016/j.bmcl.2011.02.108. http://dx.doi.org/10.1016/j.bmcl.2011.02.10810.1016/j.bmcl.2011.02.108Search in Google Scholar

[3] Damavandi, J. A., Karami, B., & Zolfigol, M. A. (2002). Selective oxidation of N-alkyl imines to oxaziridines using UHP/maleic anhydride system. Synlett, 2002, 933–934. DOI: 10.1055/s-2002-31903. http://dx.doi.org/10.1055/s-2002-3190310.1055/s-2002-31903Search in Google Scholar

[4] Davoodnia, A., Allameh, S., Fazli, S., & Tavakoli-Hoseini, N. (2011). One-pot synthesis of 2-amino-3-cyano-4-arylsubstituted tetrahydrobenzo[b]pyrans catalysed by silica gel-supported polyphosphoric acid (PPA-SiO2) as an efficient and reusable catalyst. Chemical Papers, 65, 714–720. DOI: 10.2478/s11696-011-0064-8. http://dx.doi.org/10.2478/s11696-011-0064-810.2478/s11696-011-0064-8Search in Google Scholar

[5] Heydari, A., Larijani, H., Emami, J., & Karami, B. (2000). Lithium perchlorate/diethylether-catalyzed three-component coupling reactions of aldehydes, hydroxylamines and trimethylsilyl cyanide leading to α-cyanohydroxylamines. Tetrahedron Letters, 41, 2471–2473. DOI: 10.1016/s0040-4039(00)00182-9. http://dx.doi.org/10.1016/S0040-4039(00)00182-910.1016/S0040-4039(00)00182-9Search in Google Scholar

[6] Howarth, J., & Hanlon, K. (2001). Novel N-ferrocenylmethyl, N′-methyl-2-substituted benzimidazolium iodide salts with in vitro activity against the P. falciparum malarial parasite strain NF54. Tetrahedron Letters, 42, 751–754. DOI: 10.1016/s0040-4039(00)02106-7. http://dx.doi.org/10.1016/S0040-4039(00)02106-710.1016/S0040-4039(00)02106-7Search in Google Scholar

[7] Karami, B., Damavandi, A. J., Bayat, M., & Montazerzohori, M. (2006a). A new role of N-arylbenzoquinoneimine N-oxides in the von Richter reaction. Journal of the Serbian Chemical Society, 71, 27–30. DOI: 10.2298/jsc0601027k. http://dx.doi.org/10.2298/JSC0601027K10.2298/JSC0601027KSearch in Google Scholar

[8] Karami, B., & Khodabakhshi, S. (2011). A facile synthesis of phenazine and quinoxaline (new 1,4-benzo diazine) derivatives using magnesium sulfate heptahydrate as a catalyst. Journal of the Serbian Chemical Society, 76, 1191–1198. DOI: 10.2298/jsc100801104k. http://dx.doi.org/10.2298/JSC100801104K10.2298/JSC100801104KSearch in Google Scholar

[9] Karami, B., Montazerozohori, M., & Habibi, M. H. (2005). Tungstate sulfuric acid (TSA)/NaNO2 as a novel heterogeneous system for the N-nitrosation of secondary amines under mild conditions. Bulletin of the Korean Chemical Society, 26, 1125–1128. DOI: 10.5012/bkcs.2005.26.7.1125. http://dx.doi.org/10.5012/bkcs.2005.26.7.112510.5012/bkcs.2005.26.7.1125Search in Google Scholar

[10] Karami, B., Montazerozohori, M., & Habibi, M. H. (2006b). Tungstate sulfuric acid: A novel and efficient solid acidic reagent for the oxidation of thiols to disulfides and the oxidative demasking of 1,3-dithianes. Phosphorous, Sulfur, and Silicon and the Related Elements, 181, 2825–2831. DOI: 10.1080/10426500600864965. http://dx.doi.org/10.1080/1042650060086496510.1080/10426500600864965Search in Google Scholar

[11] Kuş, C., & Altanlar, N. (2003). Synthesis of some new benzimidazole carbamate derivatives for evaluation of antifungal activity. Turkish Journal of Chemistry, 27, 35–40. Search in Google Scholar

[12] Maiti, D. K., Halder, S., Pandit, P., Chatterjee, N., De Joarder, D, Pramanik, N., Saima, Y., Patra, A., & Maiti, P. K. (2009). Synthesis of glycal-based chiralbenzimidazoles by VO(acac)2-CeCl3 combo catalyst and their self-aggregated nanostructured materials. The Journal of Organic Chemistry, 74, 8086–8097. DOI: 10.1021/jo901458k. http://dx.doi.org/10.1021/jo901458k10.1021/jo901458kSearch in Google Scholar

[13] Mallakpour, S. E., Karami-Descho, B., & Sheikholeslami, B. (1998). Polymerization of 1-methyl-2,5-bis[1-(4-phenylurazolyl)] pyrrole dianion with alkyldihalides. Polymer International, 45, 98–102. DOI: 10.1002/(SICI)1097-0126(199801)45:1〈98::AID-PI895〉3.0.CO;2-3. http://dx.doi.org/10.1002/(SICI)1097-0126(199801)45:1<98::AID-PI895>3.0.CO;2-310.1002/(SICI)1097-0126(199801)45:1<98::AID-PI895>3.0.CO;2-3Search in Google Scholar

[14] Martin, A., & Kalevaru, N. V. (2010). Heterogeneously catalyzed ammoxidation: A valuable tool for one-step synthesis of nitriles. ChemCatChem, 2, 1504–1522. DOI: 10.1002/cctc.201000173. http://dx.doi.org/10.1002/cctc.20100017310.1002/cctc.201000173Search in Google Scholar

[15] Marziano, N. C., Ronchin, L., Tortato, C., Ronchin, S., & Vavasori, A. (2005). Selective oxidations by nitrosating agents: Part 2: Oxidations of alcohols and ketones over solid acid catalysts. Journal of Molecular Catalysis A: Chemical, 235, 26–34. DOI: 10.1016/j.molcata.2005.03.008. http://dx.doi.org/10.1016/j.molcata.2005.03.00810.1016/j.molcata.2005.03.008Search in Google Scholar

[16] Migawa, M. T., Girardet, J. L., Walker, J. A., Koszalka, G. W., Chamberlain, S. D., Drach, J. C., & Townsend, L. B. (1998). Design, synthesis, and antiviral activity of α-nucleosides: d- and l-isomers of lyxofuranosyl- and (5-deoxylyxofuranosyl)benzimidazoles. Journal of Medicinal Chemistry, 41, 1242–1251. DOI: 10.1021/jm970545c. http://dx.doi.org/10.1021/jm970545c10.1021/jm970545cSearch in Google Scholar

[17] Mohammadpoor-Baltork, I., Khosropour, A. R., & Hojati, S. F. (2007). ZrOCl2·8H2O as an efficient, environmentally friendly and reusable catalyst for synthesis of benzoxazoles, benzothiazoles, benzimidazoles and oxazolo[4,5-b]pyridines under solvent-free conditions. Catalysis Communications, 8, 1865–1870. DOI: 10.1016/j.catcom.2007.02.020. http://dx.doi.org/10.1016/j.catcom.2007.02.02010.1016/j.catcom.2007.02.020Search in Google Scholar

[18] Niknam, K., & Fatehi-Raviz, A. (2007). Synthesis of 2-substituted benzimidazoles and bis-benzimidazoles by microwave in the presence of alumina-methanesulfonic acid. Journal of the Iranian Chemical Society, 4, 438–443. http://dx.doi.org/10.1007/BF0324723010.1007/BF03247230Search in Google Scholar

[19] Ogurtsov, V. A., Rakitin, O. A., Rees, C. W., & Smolentsev, A. A. (2003). 4,5-Dichloro-1,2-dithiole-3-thione in the synthesis of benzimidazole, benzoxazole and benzothiazole derivatives of 1,3-dithioles. Mendeleev Communications, 13, 50–51. DOI: 10.1070/mc2003v013n02abeh001750. http://dx.doi.org/10.1070/MC2003v013n02ABEH00175010.1070/MC2003v013n02ABEH001750Search in Google Scholar

[20] Olah, G. A., Molhotra, R., & Narang, S. C. (1978). Aromatic substitution. 43. Perfluorinated resinsulfonic acid catalyzed nitration of aromatics. The Journal of Organic Chemistry, 43, 4628–4630. DOI: 10.1021/jo00418a019. http://dx.doi.org/10.1021/jo00418a01910.1021/jo00418a019Search in Google Scholar

[21] Preston, P. N. (1974). Synthesis, reactions, and spectroscopic properties of benzimidazoles. Chemical Reviews, 74, 279–314. DOI: 10.1021/cr60289a001. http://dx.doi.org/10.1021/cr60289a00110.1021/cr60289a001Search in Google Scholar

[22] Reddy, V. P., Prasunamba, P. L., Reddy, P. S. N., & Ratnam, C. V. (1983). Synthesis of quinazolin-4-ones and benzimidazoles: fusion of 2 aminobenzamide and 1,2-diaminobenzene with organic acids. Indian Journal of Chemistry — Section B, 22B, 917–918. Search in Google Scholar

[23] Romanelli, G. P., Bennardi, D. O., Autino, J. C., Baronetti, G. T., & Thomas, H. J. (2008). A simple and mild acylation of alcohols, phenols, amines, and thiols with a reusable heteropoly acid catalyst (H6P2W18O62·24H2O). E-Journal of Chemistry, 5, 641–647. http://dx.doi.org/10.1155/2008/94589810.1155/2008/945898Search in Google Scholar

[24] Romanelli, G. P., Ruiz, D. M., Autino, J. C., & Giaccio, H. E. (2010). A suitable preparation of N-sulfonyl-1,2,3,4-tetrahydroisoquinolines and their ring homologs with a reusable Preyssler heteropolyacid as catalyst. Molecular Diversity, 14, 803–807. DOI: 10.1007/s11030-009-9173-5. http://dx.doi.org/10.1007/s11030-009-9173-510.1007/s11030-009-9173-5Search in Google Scholar

[25] Roquea, J. M., Pandiyana, T., Cruz, J., & García-Ochoa, E. (2008). DFT and electrochemical studies of tris(benzimidazole-2-ylmethyl)amine as an efficient corrosion inhibitor for carbon steel surface. Corrosion Science, 50, 614–624. DOI: 10.1016/j.corsci.2007.11.012. http://dx.doi.org/10.1016/j.corsci.2007.11.01210.1016/j.corsci.2007.11.012Search in Google Scholar

[26] Santato, C., Odziemkowski, M., Ulmann, M., & Augustynski, J. (2001). Crystallographically oriented mesoporous WO3 Films: Synthesis, characterization, and applications. Journal of the American Chemical Society, 123, 10639–10649. DOI: 10.1021/ja011315x. http://dx.doi.org/10.1021/ja011315x10.1021/ja011315xSearch in Google Scholar

[27] Sharma, S., Gangal, S., & Rauf, A. (2009). Convenient one-pot synthesis of novel 2-substituted benzimidazoles, tetrahydrobenzimidazoles and imidazoles and evaluation of their in vitro antibacterial and antifungal activities. European Journal of Medicinal Chemistry, 44, 1751–1757. DOI: 10.1016/j.ejmech.2008.03.026. http://dx.doi.org/10.1016/j.ejmech.2008.03.02610.1016/j.ejmech.2008.03.026Search in Google Scholar

[28] Tamaddon, F., & Tavakoli, F. (2011). One-pot synthesis of N-tert-butyl amides from alcohols, ethers and esters using ZnCl2/SiO2 as a recyclable heterogeneous catalyst. Journal of Molecular Catalysis A: Chemical, 337, 52–55. DOI: 10.1016/j.molcata.2011.01.013. http://dx.doi.org/10.1016/j.molcata.2011.01.01310.1016/j.molcata.2011.01.013Search in Google Scholar

[29] Tamm, I. (1957). Ribonucleic acid synthesis and infulenza virus multiplication. Science, 126, 1235–1236. DOI: 10.1126/science.126.3285.1229. 10.1126/science.126.3285.1229Search in Google Scholar

[30] Tarte, N. H., Woo, S. I., Cui, L., Gong, Y D., & Hwang, Y. H. (2008). Novel non-chelated cobalt(II) benzimidazole complex catalysts: Synthesis, crystal structures and cocatalyst effect in vinyl polymerization of norbornene. Journal of Organometallic Chemistry, 693, 729–736. DOI: 10.1016/j.jorganchem.2007.12.001. http://dx.doi.org/10.1016/j.jorganchem.2007.12.00110.1016/j.jorganchem.2007.12.001Search in Google Scholar

[31] Wright, J. B. (1951). Errata and addenda — the chemistry of the benzimidazoles. Chemical Reviews, 49, 397–541. DOI: 10.1021/cr60153a603. http://dx.doi.org/10.1021/cr60151a00210.1021/cr60153a603Search in Google Scholar

[32] Zolfigol, M. A. (2001). Silica sulfuric acid/NaNO2 as a novel heterogeneous system for production of thionitrites and disul-fides under mild conditions. Tetrahedron, 57, 9509–9511. DOI: 10.1016/s0040-4020(01)00960-7. http://dx.doi.org/10.1016/S0040-4020(01)00960-710.1016/S0040-4020(01)00960-7Search in Google Scholar

[33] Zolfigol, M. A., & Bamoniri, A. (2002). Silica sulfuric acid/NaNO2 as a novel heterogeneous system for the chemoselective N-nitrosation of secondary amines under mild conditions. Synlett, 2002, 1621–1624. DOI: 10.1055/s-2002-34230. http://dx.doi.org/10.1055/s-2002-3423010.1055/s-2002-34230Search in Google Scholar

[34] Zolfigol, M. A., Shirin, F., Choghamarani, G. A., & Mohammadpoor-Baltork, I. (2002). Silica modified sulfuric acid/NaNO2 as a novel heterogeneous system for the oxidation of 1,4-dihydropyridines under mild conditions. Green Chemistry, 4, 562–564. DOI: 10.1039/b208328k. http://dx.doi.org/10.1039/b208328k10.1039/b208328kSearch in Google Scholar

Published Online: 2012-6-22
Published in Print: 2012-7-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0152-4/pdf
Scroll to top button