Abstract
We report on an optical characterisation of nanocrystalline diamond films photochemically functionalised with the organosilane-coupling agent, N 1-(3-(trimethoxysilyl)propyl)hexane-1,6-diamine (alternative names: N-(6-aminohexyl)aminopropyl-trimethoxysilane, (3-(6-aminohexylamino)propyl) trimetoxysilane, AHAPS). The presence and homogeneity of the organosilane layers were detected by fluorescence microscopy and infrared reflectance-absorbance spectroscopy. The results indicated that a homogeneous surface coverage with organosilane layers was achieved on diamond surfaces which were modified either by hydrogen or by oxygen plasma treatment. The functionalised nanocrystalline diamonds present a promising solution in future biosensor applications.
[1] Bacakova, L., Grausova, L., Vacik, J., Fraczek, A., Blazewicz, S., Kromka, A., Vanecek, M., & Svorcik, V. (2007). Improved adhesion and growth of human osteoblast-like MG 63 cells on biomaterials modified with carbon nanoparticles. Diamond and Related Materials, 16, 2133–2140. DOI: 10.1016/j.diamond.2007.07.015. http://dx.doi.org/10.1016/j.diamond.2007.07.01510.1016/j.diamond.2007.07.015Search in Google Scholar
[2] Christiaens, P., Vermeeren, V., Wenmackers, S., Daenen, M., Haenen, K., Nesládek, M., vandeVen, M., Ameloot, M., Michiels, L., & Wagner, P. (2006). EDC-mediated DNA attachment to nanocrystalline CVD diamond films. Biosensors & Bioelectronics, 22, 170–177. DOI: 10.1016/j.bios.2005.12.013. http://dx.doi.org/10.1016/j.bios.2005.12.01310.1016/j.bios.2005.12.013Search in Google Scholar
[3] Davydova, M., Kromka, A., Exnar, P., Stuchlik, M., Hruska, K., Vanecek, M., & Kalbac, M. (2009). Selective detection of phosgene by nanocrystalline diamond layer. Physica Status Solidi A, 206, 2070–2073. DOI: 10.1002/pssa.200982216. http://dx.doi.org/10.1002/pssa.20098221610.1002/pssa.200982216Search in Google Scholar
[4] Füner, M., Wild, C., & Koidl, P. (1998). Novel microwave plasma reactor for diamond synthesis. Applied Physics Letters, 72, 1149–1151. DOI: 10.1063/1.120997. http://dx.doi.org/10.1063/1.12099710.1063/1.120997Search in Google Scholar
[5] Gruen, D. M. (1999). Nanocrystalline diamond films. Annual Review of Materials Science, 29, 211–259. DOI: 10.1146/annurev.matsci.29.1.211. http://dx.doi.org/10.1146/annurev.matsci.29.1.21110.1146/annurev.matsci.29.1.211Search in Google Scholar
[6] Kneuer, C., Sameti, M., Haltner, E. G., Schiestel, T., Schirra, H., Schmidt, H., & Lehr, C.-M. (2000). Silica nanoparticles modified with aminosilanes as carriers for plasmid DNA. In ternational Journal of Pharmaceutics, 196, 257–261. DOI: 10.1016/S0378-5173(99)00435-4. http://dx.doi.org/10.1016/S0378-5173(99)00435-410.1016/S0378-5173(99)00435-4Search in Google Scholar
[7] Kozak, H., Kromka, A., Babchenko, O., & Rezek, B. (2010). Directly grown nanocrystalline diamond field-effect transistor microstructures. Sensor Letters, 8, 482–487. DOI: 10.1166/sl2010.1298. Search in Google Scholar
[8] Kozak, H., Kromka, A., Ledinsky, M., & Rezek, B. (2009a). Enhancing nanocrystalline diamond surface conductivity by deposition temperature and chemical post-processing. Physica Status Solidi A, 206, 276–280. DOI: 10.1002/pssa.200824355. http://dx.doi.org/10.1002/pssa.20082435510.1002/pssa.200824355Search in Google Scholar
[9] Kozak, H., Kromka, A., Ukraintsev, E., Houdkova, J., Ledinsky, M., Vaněček, M., & Rezek, B. (2009b). Detecting sp2 phase on diamond surfaces by atomic force microscopy phase imaging and its effects on surface conductivity. Diamond and Related Materials, 18, 722–725. DOI: 10.1016/j.diamond.2009.02.010. http://dx.doi.org/10.1016/j.diamond.2009.02.01010.1016/j.diamond.2009.02.010Search in Google Scholar
[10] Kromka, A., Rezek, B., Remes, Z., Michalka, M., Ledinsky, M., Zemek, J., Potmesil, J., & Vanecek, M. (2008). Formation of continuous nanocrystalline diamond layers on glass and silicon at low temperatures. Chemical Vapor Deposition, 14, 181–186. DOI: 10.1002/cvde.200706662. http://dx.doi.org/10.1002/cvde.20070666210.1002/cvde.200706662Search in Google Scholar
[11] Landstrass, M. I., & Ravi, K. V. (1989). Resistivity of chemical vapor deposited diamond films. Applied Physics Letters, 55, 975–977. DOI: 10.1063/1.101694. http://dx.doi.org/10.1063/1.10169410.1063/1.101694Search in Google Scholar
[12] Lud, S. Q., Steenackers, M., Jordan, R., Bruno, P., Gruen, D. M., Feulner, P., Garrido, J. A., & Stutzmann, M. (2006). Chemical grafting of biphenyl self-assembled monolayers on ultrananocrystalline diamond. Journal of the American Chemical Society, 128, 16884–16891. DOI: 10.1021/ja0657049. http://dx.doi.org/10.1021/ja065704910.1021/ja0657049Search in Google Scholar PubMed
[13] Maier, F., Riedel, M., Mantel, B., Ristein, J., & Ley, L. (2000). Origin of surface conductivity in diamond. Physical Review Letters, 85, 3472–3475. DOI: 10.1103/PhysRevLett.85.3472. http://dx.doi.org/10.1103/PhysRevLett.85.347210.1103/PhysRevLett.85.3472Search in Google Scholar PubMed
[14] Maitra, U., Gomathi, A., & Rao, C. N. R. (2008). Covalent and noncovalent functionalisation and solubilisation of nanodiamond. Journal of Experimental Nanoscience, 3, 271–278. DOI: 10.1080/17458080802574155. http://dx.doi.org/10.1080/1745808080257415510.1080/17458080802574155Search in Google Scholar
[15] Nebel, C. E., Kato, H., Rezek, B., Shin, D., Takeuchi, D., Watanabe, H., & Yamamoto, T. (2006). Electrochemical properties of undoped hydrogen terminated CVD diamond. Diamond and Related Materials, 15, 264–268. DOI: 10.1016/j.diamond.2005.08.012. http://dx.doi.org/10.1016/j.diamond.2005.08.01210.1016/j.diamond.2005.08.012Search in Google Scholar
[16] Potocky, S., Kromka, A., Potmesil, J., Remes, Z., Vorlicek, V., Vanecek, M., & Michalka, M. (2007). Investigation of nanocrystalline diamond films grown on silicon and glass at substrate temperature below 400°C. Diamond and Related Materials, 16, 744–747. DOI: 10.1016/j.diamond.2006.11. 028. http://dx.doi.org/10.1016/j.diamond.2006.11.02810.1016/j.diamond.2006.11.028Search in Google Scholar
[17] Qureshi, A., Gurbuz, Y., Howell, M., Kang, W. P., & Davidson, J. L. (2010). Nanocrystalline diamond film for biosensor applications. Diamond and Related Materials, 19, 457–461. DOI: 10.1016/j.diamond.2010.01.012. http://dx.doi.org/10.1016/j.diamond.2010.01.01210.1016/j.diamond.2010.01.012Search in Google Scholar
[18] Remes, Z., Kozak, H., Babchenko, O., Ukraintsev, E., Rezek, B., & Kromka, A. (2010). Grazing angle reflectance spectroscopy of organic monolayers on nanocrystalline diamond films. In Proceedings of Diamond 2010, The 21st European Conference on Diamond, Diamond-Like Materials, Carbon Nanotubes, and Nitrides, 5–9 September 2010. Budapest, Hungary. Search in Google Scholar
[19] Remes, Z., Kromka, A., Kozak, H., Vanecek, M., Haenen, K., & Wenmackers, S. (2009). The infrared optical absorption spectra of the functionalized nanocrystalline diamond surface. Diamond and Related Materials, 18, 772–775. DOI: 10.1016/j.diamond.2008.11.025. http://dx.doi.org/10.1016/j.diamond.2008.11.02510.1016/j.diamond.2008.11.025Search in Google Scholar
[20] Remes, Z., Kromka, A., Vanecek, M., Grinevich, A., Hartmannova, H., & Kmoch, S. (2007). The RF plasma surface chemical modification of nanodiamond films grown on glass and silicon at low temperature. Diamond and Related Materials, 16, 671–674. DOI: 10.1016/j.diamond.2006.11.100. http://dx.doi.org/10.1016/j.diamond.2006.11.10010.1016/j.diamond.2006.11.100Search in Google Scholar
[21] Rezek, B., Shin, D., Watanabe, H., & Nebel, C. E. (2007). Intrinsic hydrogen-terminated diamond as ion-sensitive field effect transistor. Sensors and Actuators B: Chemical, 122, 596–599. DOI: 10.1016/j.snb.2006.07.004. http://dx.doi.org/10.1016/j.snb.2006.07.00410.1016/j.snb.2006.07.004Search in Google Scholar
[22] Rezek, B., Watanabe, H., & Nebel, C. E (2006a). High carrier mobility on hydrogen terminated 〈100〉 diamond surfaces. Applied Physics Letters, 88, 042110. DOI: 10.1063/1.2168497. http://dx.doi.org/10.1063/1.216849710.1063/1.2168497Search in Google Scholar
[23] Rezek, B., Watanabe, H., Shin, D., Yamamoto, T., & Nebel, C. E. (2006b). Ion-sensitive field effect transistor on hydrogenated diamond. Diamond and Related Materials, 15, 673–677. DOI: 10.1016/j.diamond.2005.12.023. http://dx.doi.org/10.1016/j.diamond.2005.12.02310.1016/j.diamond.2005.12.023Search in Google Scholar
[24] Socrates, G. (2001). Infrared and Raman characteristic group frequencies: Tables and charts (3rd ed.). Chichester, UK: Wiley. Search in Google Scholar
[25] Stutzmann, M., Garrido, J. A., Eickhoff, M., & Brandt, M. S. (2006). Direct biofunctionalization of semiconductors: A survey. Physica Status Solidi A, 203, 3424–3437. DOI: 10.1002/pssa.200622512. http://dx.doi.org/10.1002/pssa.20062251210.1002/pssa.200622512Search in Google Scholar
[26] Sussmann, R. S. (Ed.) (2009). CVD diamond for electronic devices and sensors. Chichester, UK: Wiley. 10.1002/9780470740392Search in Google Scholar
[27] Vermeeren, V., Bijnens, N., Wenmackers, S., Daenen, M., Haenen, K., Williams, O. A., Ameloot, M., vandeVen, M., Wagner, P., & Michiels, L. (2007). Towards a real-time, label-free, diamond-based DNA sensor. Langmuir, 23, 13193–13202. DOI: 10.1021/la702143d. http://dx.doi.org/10.1021/la702143d10.1021/la702143dSearch in Google Scholar PubMed
[28] Wang, J., Firestone, M. A., Auciello, O., & Carlisle, J. A. (2004). Surface functionalization of ultrananocrystalline diamond films by electrochemical reduction of aryldiazonium salts. Langmuir, 20, 11450–11456. DOI: 10.1021/la048740z. http://dx.doi.org/10.1021/la048740z10.1021/la048740zSearch in Google Scholar PubMed
[29] Wen, K., Maoz, R., Cohen, H., Sagiv, J., Gibaud, A., Desert, A., & Ocko, B. M. (2008). Postassembly chemical modification of a highly ordered organosilane multilayer: new insights into the structure, bonding, and dynamics of self-assembling silane monolayers. ACS Nano, 2, 579–599. DOI: 10.1021/nn800011t. http://dx.doi.org/10.1021/nn800011t10.1021/nn800011tSearch in Google Scholar PubMed
[30] Wenmackers, S., Christiaens, P., Daenen, M., Haenen, K., Nesládek, M., van deVen, M., Vermeeren, V., Michiels, L., Ameloot, M., & Wagner, P. (2005). DNA attachment to nanocrystalline diamond films. Physica Status Solidi A, 202, 2212–2216. DOI: 10.1002/pssa.200561932. http://dx.doi.org/10.1002/pssa.20056193210.1002/pssa.200561932Search in Google Scholar
[31] Wong, S. S. (1991). Chemistry of protein conjugation and cross-linking. Boca Raton, FL, USA: CRC Press. Search in Google Scholar
[32] Yang, N., Uetsuka, H., Watanabe, H., Nakamura, T., & Nebel, C. E. (2008). Photochemical attachment of aminelayers on H-terminated undoped single crystalline CVD diamonds. Diamond and Related Materials, 17, 1376–1379. DOI: 10.1016/j.diamond.2008.01.065. http://dx.doi.org/10.1016/j.diamond.2008.01.06510.1016/j.diamond.2008.01.065Search in Google Scholar
[33] Yang, W., & Hamers, R. J. (2004). Fabrication and characterization of a biologically sensitive field-effect transistor using a nanocrystalline diamond thin film. Applied Physics Letters, 85, 3626–3628. DOI: 10.1063/1.1808885. http://dx.doi.org/10.1063/1.180888510.1063/1.1808885Search in Google Scholar
[34] Yang, W., Auciello, O., Butler, J. E., Cai, W., Carlisle, J. A., Gerbi, J. E., Gruen, D. M., Knickerbocker, T., Lasseter, T. L., Russell, J. N., Jr., Smith, L. M., & Hamers, R. J. (2002). DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates. Nature Materials, 1, 253–257. DOI: 10.1038/nmat779. http://dx.doi.org/10.1038/nmat77910.1038/nmat779Search in Google Scholar PubMed
[35] Zemek, J., Houdkova, J., Lesiak, B., Jablonski, A., Potmesil, J., & Vanecek, M. (2006). Electron spectroscopy of nanocrystalline diamond surfaces. Journal of Optoelectronics and Advanced Materials, 8, 2133–2138. Search in Google Scholar
[36] Zhang, G.-J., Song, K.-S., Nakamura, Y., Ueno, T., Funatsu, T., Ohdomari, I., & Kawarada, H. (2006). DNA micropatterning on polycrystalline diamond via one-step direct amination. Langmuir, 22, 3728–3734. DOI: 10.1021/la050883d. http://dx.doi.org/10.1021/la050883d10.1021/la050883dSearch in Google Scholar PubMed
© 2010 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Application of polyaniline as an efficient and novel adsorbent for azo dyes removal from textile wastewaters
- Enzymatic synthesis and analytical monitoring of terpene ester by 1H NMR spectroscopy
- Effect of fiber modification with carboxymethyl cellulose on the efficiency of a microparticle flocculation system
- Synthesis, crystal structure, and thermal analysis of a copper(II) complex with imidazo[4,5-f]1,10-phenantroline
- Hydrothermal synthesis of core-shell structured PS@GdPO4:Tb3+/Ce3+ spherical particles and their luminescence properties
- Optical characterisation of organosilane-modified nanocrystalline diamond films
- Synthesis, optical, and spectroscopic characterisation of substituted 3-phenyl-2-arylacrylonitriles
- A new group of potential antituberculotics: N-(2-pyridylmethyl)salicylamides and N-(3-pyridylmethyl)salicylamides
- Synthesis and antimicrobial properties of new 2-((4-ethylphenoxy)methyl)benzoylthioureas
- Synthesis, characterisation, and biological activity of three new amide prodrugs of lamotrigine with reduced hepatotoxicity
- Comparative study of CTAB adsorption on bituminous coal and clay mineral
- Density of the systems (NaF/AlF3)—AlPO4 and (NaF/AlF3)—NaVO3
- Semiquinol and phenol compounds from seven Senecio species
- Determination of the enthalpy of fusion of K3NbO2F4
Articles in the same Issue
- Application of polyaniline as an efficient and novel adsorbent for azo dyes removal from textile wastewaters
- Enzymatic synthesis and analytical monitoring of terpene ester by 1H NMR spectroscopy
- Effect of fiber modification with carboxymethyl cellulose on the efficiency of a microparticle flocculation system
- Synthesis, crystal structure, and thermal analysis of a copper(II) complex with imidazo[4,5-f]1,10-phenantroline
- Hydrothermal synthesis of core-shell structured PS@GdPO4:Tb3+/Ce3+ spherical particles and their luminescence properties
- Optical characterisation of organosilane-modified nanocrystalline diamond films
- Synthesis, optical, and spectroscopic characterisation of substituted 3-phenyl-2-arylacrylonitriles
- A new group of potential antituberculotics: N-(2-pyridylmethyl)salicylamides and N-(3-pyridylmethyl)salicylamides
- Synthesis and antimicrobial properties of new 2-((4-ethylphenoxy)methyl)benzoylthioureas
- Synthesis, characterisation, and biological activity of three new amide prodrugs of lamotrigine with reduced hepatotoxicity
- Comparative study of CTAB adsorption on bituminous coal and clay mineral
- Density of the systems (NaF/AlF3)—AlPO4 and (NaF/AlF3)—NaVO3
- Semiquinol and phenol compounds from seven Senecio species
- Determination of the enthalpy of fusion of K3NbO2F4