Home Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in hyaluronic acid and single walled carbon nanotubes composite film
Article
Licensed
Unlicensed Requires Authentication

Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in hyaluronic acid and single walled carbon nanotubes composite film

  • Qi Wang EMAIL logo and Jianbin Zheng
Published/Copyright: August 14, 2010
Become an author with De Gruyter Brill

Abstract

Direct electrochemistry and electrocatalysis of horseradish peroxidase (HRP) immobilized on a hyaluronic acid (HA)-single walled carbon nanotubes (SCNs) composite film coated glassy carbon electrode (GCE) was studied for the first time. HRP entrapped in the SCNs-HA composite film exhibited a pair of well-defined, quasi-reversible cyclic voltammetric peaks in a 0.1 M phosphate buffer solution (pH 7.0). Formal potential vs. standard calomel electrode (E°′) was −0.232 V, and E°′ was linearly dependent on the solution pH indicating that the electron transfer was proton-coupled. The current is linearly dependent on the scan rate, indicating that the direct electrochemistry of HRP in that case is a surface-controlled electrode process. UV-VIS spectrum suggested HRP retained its original conformation in the SCNs-HA film. Immobilized HRP showed excellent electrocatalysis in the reduction of hydrogen peroxide (H2O2).

[1] Bard, A. J., & Faulkner, L. R. (1980). Electrochemical methods (pp. 439). New York, NY, USA: Wiley. Search in Google Scholar

[2] Chikkaveeraiah, B. V., Liu, H., Mani, V., Papadimitrakopoulos, F., & Rusling, J. F. (2009). A microfluidic electrochemical device for high sensitivity biosensing: Detection of nanomolar hydrogen peroxide. Electrochemistry Communications, 11, 819–822. DOI: 10.1016/j.elecom.2009.02.002. http://dx.doi.org/10.1016/j.elecom.2009.02.00210.1016/j.elecom.2009.02.002Search in Google Scholar

[3] Chen, X., Ruan, C., Kong, J., & Deng, J. (2000). Characterization of the direct electron transfer and bioelectrocatalysis of horseradish peroxidase in DNA film at pyrolytic graphite electrode. Analytica Chimica Acta, 412, 89–98. DOI: 10.1016/S0003-2670 (99) 00877-6. http://dx.doi.org/10.1016/S0003-2670(99)00877-610.1016/S0003-2670(99)00877-6Search in Google Scholar

[4] Du, D., Huang, X., Cai, J., & Zhang, A. (2007). Amperometric detection of triazophos pesticide using acetylcholinesterase biosensor based on multiwall carbon nanotube-chitosan matrix. Sensors and Actuators B: Chemical, 127, 531–535. DOI: 10.1016/j.snb.2007.05.006. http://dx.doi.org/10.1016/j.snb.2007.05.00610.1016/j.snb.2007.05.006Search in Google Scholar

[5] ElKaoutit, M., Naranjo-Rodriguez, I., Domínguez, M., Hernández-Artiga, M. P., Bellido-Milla, D., & Hidalgo-Hidalgo de Cisneros, J. L. (2008). A third-generation hydrogen peroxide biosensor based on Horseradish Peroxidase (HRP) enzyme immobilized in a Nafion-Sonogel-Carbon composite. Electrochimca Acta, 53, 7131–7137. DOI: 10.1016/j.electacta.2008.04.086. http://dx.doi.org/10.1016/j.electacta.2008.04.08610.1016/j.electacta.2008.04.086Search in Google Scholar

[6] Gao, R., Shangguan, X., Qiao, G., & Zheng, J. (2008). Direct electrochemistry of hemoglobin and its electrocatalysis based on hyaluronic acid and room temperature ionic liquid. Electroanalysis, 20, 2537–2542. DOI: 10.1002/elan.200804353. http://dx.doi.org/10.1002/elan.20080435310.1002/elan.200804353Search in Google Scholar

[7] Goyal, R. N., Tyagi, A., Bachheti, N., & Bishnoi, S. (2008). Voltammetric determination of bisoprolol fumarate in pharmaceutical formulations and urine using single-wall carbon nanotubes modified glassy carbon electrode. Electrochimca Acta, 53, 2802–2808. DOI: 10.1016/j.electacta.2007.10.057. http://dx.doi.org/10.1016/j.electacta.2007.10.05710.1016/j.electacta.2007.10.057Search in Google Scholar

[8] Huang, H., Hu, N., Zeng, Y., & Zhou, G. (2002). Electrochemistry and electrocatalysis with heme proteins in chitosan biopolymer films. Analytical Biochemistry, 308, 141–151. DOI: 10.1016/S0003-2697(02)00242-7. http://dx.doi.org/10.1016/S0003-2697(02)00242-710.1016/S0003-2697(02)00242-7Search in Google Scholar

[9] Iijima, S. (1991). Helical microtubules of graphitic carbon, Nature, 354, 56–58. DOI: 10.1038/354056a0. http://dx.doi.org/10.1038/354056a010.1038/354056a0Search in Google Scholar

[10] Kang, X., Wang, J., Tang, Z., Wu, H., & Lin, Y. (2009). Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in hybrid organic-inorganic film of chitosan/sol-gel/carbon nanotubes. Talanta, 78, 120–125. DOI: 10.1016/j.talanta.2008.10.063. http://dx.doi.org/10.1016/j.talanta.2008.10.06310.1016/j.talanta.2008.10.063Search in Google Scholar PubMed

[11] Lee, H., & Mijović, J. (2009). Bio-nano complexes: DNA/surfactant/single-walled carbon nanotube interactions in electric field. Polymer, 50, 881–890. DOI: 10.1016/j.polymer.2008.12.021. http://dx.doi.org/10.1016/j.polymer.2008.12.02110.1016/j.polymer.2008.12.021Search in Google Scholar

[12] Liu, G., & Gooding, J. J. (2006). An interface comprising molecular wires and poly(ethylene glycol) spacer units selfassembled on carbon electrodes for studies of protein electrochemistry. Langmuir, 22, 7421–7430. DOI: 10.1021/la0607510. http://dx.doi.org/10.1021/la060751010.1021/la0607510Search in Google Scholar

[13] Liu, H., & Hu, N. (2006). Interaction between myoglobin and hyaluronic acid in their layer-by-layer assembly: Quartz crystal microbalance and cyclic voltammetry studies. The Journal of Physical Chemistry B, 110, 14494–14502. DOI: 10.1021/jp061271k. http://dx.doi.org/10.1021/jp061271k10.1021/jp061271kSearch in Google Scholar

[14] Laviron, E. (1979). The use of linear potential sweep voltammetry and of a.c. voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes. Journal of Electroanalytical Chemistry, 100, 263–270. DOI: 10.1016/S0022-0728(79)80167-9. http://dx.doi.org/10.1016/S0022-0728(79)80167-910.1016/S0022-0728(79)80167-9Search in Google Scholar

[15] Ma, L., Tian Y., & Rong, Z. (2007). Direct electrochemistry of hemoglobin in the hyaluronic acid films. Journal of Biochemical and Biophysical Methods, 70, 657–662. DOI: 10.1016/j.jbbm.2007.03.004. http://dx.doi.org/10.1016/j.jbbm.2007.03.00410.1016/j.jbbm.2007.03.004Search in Google Scholar

[16] Nassar, A.-E. F., Rusling, J. F., & Kumosinski, T. F. (1997). Salt and pH effects on electrochemistry of myoglobin in thick films of a bilayer-forming surfactant. Biophysical Chemistry, 67, 107–116. DOI: 10.1016/S0301-4622(97)00027-6. http://dx.doi.org/10.1016/S0301-4622(97)00027-610.1016/S0301-4622(97)00027-6Search in Google Scholar

[17] Ruzgas, T., Gorton, L., Emnéus, J., & Marko-Varga, G. (1995). Kinetic models of horseradish peroxidase action on a graphite electrode. Journal of Electroanalytical Chemistry, 391, 41–49. DOI: 10.1016/0022-0728(95)03930-F. http://dx.doi.org/10.1016/0022-0728(95)03930-F10.1016/0022-0728(95)03930-FSearch in Google Scholar

[18] Sapurina, I., & Stejskal, J. (2009). Ternary composites of multi-wall carbon nanotubes, polyaniline, and noble-metal nanoparticles for potential applications in electrocatalysis. Chemical Papers, 63, 579–585. DOI: 10.2478/s11696-009-0061-3. http://dx.doi.org/10.2478/s11696-009-0061-310.2478/s11696-009-0061-3Search in Google Scholar

[19] Teng, Y. J., Zuo, S. H., & Lan, M. B. (2009). Direct electron transfer of Horseradish peroxidase on porous structure of screen-printed electrode. Biosensors and Bioelectronics, 24, 1353–1357. DOI: 10.1016/j.bios.2008.07.062. http://dx.doi.org/10.1016/j.bios.2008.07.06210.1016/j.bios.2008.07.062Search in Google Scholar PubMed

[20] Wang, J., Li, M., Shi, Z., Li, N., & Gu, Z. (2002). Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes. Analytical Chemistry, 74, 1993–1997. DOI: 10.1021/ac010978u. http://dx.doi.org/10.1021/ac010978u10.1021/ac010978uSearch in Google Scholar PubMed

[21] Wang, J., & Musameh, M. (2003). Carbon nanotube/Teflon composite electrochemical sensors and biosensors. Analytical Chemistry, 75, 2075–2079. DOI: 10.1021/ac030007+. http://dx.doi.org/10.1021/ac030007+10.1021/ac030007+Search in Google Scholar PubMed

[22] Wang J., Pamidi, P. V. A., & Rogers, K. R. (1998). Sol-gelderived thick-film amperometric immunosensors. Analytical Chemistry, 70, 1171–1175. DOI: 10.1021/ac971093e. http://dx.doi.org/10.1021/ac971093e10.1021/ac971093eSearch in Google Scholar

[23] Wang, M., Zhao, F., Liu Y., & Dong, S. (2005). Direct electrochemistry of microperoxidase at Pt microelectrodes modified with carbon nanotubes. Biosensors and Bioelectronics, 21, 159–166. DOI: 10.1016/j.bios.2004.08.012. http://dx.doi.org/10.1016/j.bios.2004.08.01210.1016/j.bios.2004.08.012Search in Google Scholar

[24] Zhang, Y., He, P., & Hu, N. (2004). Horseradish peroxidase immobilized in TiO2 nanoparticle films on pyrolytic graphite electrodes: direct electrochemistry and bioelectrocatalysis. Electrochimca Acta, 49, 1981–1988. DOI: 10.1016/j.electacta.2003.12.028. http://dx.doi.org/10.1016/j.electacta.2003.12.02810.1016/j.electacta.2003.12.028Search in Google Scholar

[25] Zhang, Y., & Zheng, J. (2008). Direct electrochemistry and electrocatalysis of myoglobin immobilized in hyaluronic acid and room temperature ionic liquids composite film. Electrochemistry Communications, 10, 1400–1403. DOI: 10.1016/j.elecom.2008.07.022. http://dx.doi.org/10.1016/j.elecom.2008.07.02210.1016/j.elecom.2008.07.022Search in Google Scholar

[26] Zhao, X., Mai, Z., Kang, X., & Zou, X. (2008). Direct electrochemistry and electrocatalysis of horseradish peroxidase based on clay-chitosan-gold nanoparticle nanocomposite. Biosensors and Bioelectronics, 23, 1032–1038. DOI: 10.1016/j.bios.2007.10.012. http://dx.doi.org/10.1016/j.bios.2007.10.01210.1016/j.bios.2007.10.012Search in Google Scholar

[27] Zhu, Y., Cao, H., Tang, L., Yang, X., & Li, C. (2009). Immobilization of horseradish peroxidase in three-dimensional macroporous TiO2 matrices for biosensor applications. Electrochimica Acta, 54, 2823–2827. DOI: 10.1016/j.electacta.2008.11.025. http://dx.doi.org/10.1016/j.electacta.2008.11.02510.1016/j.electacta.2008.11.025Search in Google Scholar

[28] Zhu, Y., Cheng, G., & Dong, S. (2002). Structural electrochemical study of hemoglobin by in situ circular dichroism thin layer spectroelectrochemistry. Biophysical Chemistry, 97, 129–138. DOI: 10.1016/S0301-4622(02)00045-5. http://dx.doi.org/10.1016/S0301-4622(02)00045-510.1016/S0301-4622(02)00045-5Search in Google Scholar

Published Online: 2010-8-14
Published in Print: 2010-10-1

© 2010 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. A deuterium-palladium electrode as a new sensor in non-aqueous solutions: potentiometric titration of weak acids in acetonitrile and benzonitrile
  2. Chemical variability of Artemisia herba-alba Asso essential oils from East Morocco
  3. Ag and Cu loaded on TiO2/graphite as a catalyst for Escherichia coli-contaminated water disinfection
  4. Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in hyaluronic acid and single walled carbon nanotubes composite film
  5. Biological buffered saline solution as solvent in agar-carbomer hydrogel synthesis
  6. GC/MS analysis of gaseous degradation products formed during extrusion blow molding process of PE films
  7. Preparation, spectral, thermal, and biological properties of zinc(II) 4-chloro- and 5-chlorosalicylate complexes with methyl 3-pyridylcarbamate and phenazone
  8. Polyamidoamine dendrimer and dextran conjugates: preparation, characterization, and in vitro and in vivo evaluation
  9. Morphological characteristics of modified freeze-dried poly(N-isopropylacrylamide) microspheres studied by optical microscopy, SEM, and DLS
  10. Photophysical properties of novel ferrocenyl quinoline derivatives with red emission in solutions and polymeric matrices
  11. Preparation and characterization of hydrogels based on acryloyl end-capped four-arm star-shaped poly(ethylene glycol)-branched-oligo(l-lactide) via Michael-type addition reaction
  12. ArF laser photolytic deposition and thermal modification of an ultrafine chlorohydrocarbon
  13. Asymmetric synthesis of machilin C and its analogue
  14. Synthesis and study of some new N-substituted imide derivatives as potential antibacterial agents
  15. Single crystal X-ray structure and optical properties of anthraquinone-based dyes
  16. Low-density polyethylene in mixtures of hexane and benzene derivates
  17. Factors influencing aggregation behavior of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer in mixed solvents
  18. Chemical evaluation of Fallopia species leaves and antioxidant properties of their non-cellulosic polysaccharides
  19. Rapid synthesis and bioactivities of 3-(nitromethylene)indolin-2-one analogues
  20. ZnO nanorods catalyzed N-alkylation of piperidin-4-one, 4(3H)-pyrimidone, and ethyl 6-chloro-1,2-dihydro-2-oxo-4-phenylquinoline-3-carboxylate
Downloaded on 1.10.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-010-0053-3/html
Scroll to top button