Abstract
A deuterium-palladium electrode was employed as a new indicator electrode for the titration of weak acids in acetonitrile and benzonitrile. The investigated electrode showed a linear dynamic response for p-toluenesulfonic acid in the concentration range from 0.001 M to 0.1 M with a Nernstian slope of 48 mV in acetonitrile. Sodium methylate, potassium hydroxide and tetrabutylammonium hydroxide proved to be very suitable titrating agents for these titrations. The response time was less than 10-11 s and the lifetime of the electrode was limitless. Advantages of the electrode are: long-term stability, fast response, reproducibility, easy preparation and low cost.
[1] Aktaş, A. H., Yaşar, G., & Alsancak, G. Ö. (2001). Conductimetric and potentiometric titration of some hydroxylated cinnamic acids with tetrabutylammonium hydroxide in nonaqueous media. Turkish Journal of Chemistry, 25, 501–508. Search in Google Scholar
[2] Al-Daher, I. M., & Kratochvil, B. (1980). Potentiometric titrations of metal ions in acetonitrile with polyamine ligands. Talanta, 27, 983–988. DOI: 10.1016/0039-9140(80)80131-7. http://dx.doi.org/10.1016/0039-9140(80)80131-710.1016/0039-9140(80)80131-7Search in Google Scholar
[3] Andrés, M. J., & Romero, C. (1988). Differentiation of the acidic groups of fulvic acids from lignite by potentiometric titration in acetone, acetonitrile and isopropanol. Fuel, 67, 1305–1307. DOI: 10.1016/0016-2361(88)90055-5. http://dx.doi.org/10.1016/0016-2361(88)90055-510.1016/0016-2361(88)90055-5Search in Google Scholar
[4] Antonijević, M. M., Vukanović, B., & Mihajlović, R. (1992). Natural monocrystalline pyrite as electrode material for potentiometric titrations in water. Talanta, 39, 809–814. DOI: 10.1016/0039-9140(92)80100-R. http://dx.doi.org/10.1016/0039-9140(92)80100-R10.1016/0039-9140(92)80100-RSearch in Google Scholar
[5] Barbosa, J., Hernandez-Cassou, S., Sanz-Nebot, V., & Toro, I. (1997). Variation of acidity constants of peptides in acetonitrile-water mixtures with solvent composition: effect of preferential solvation. The Journal of Peptide Research, 50, 14–24. DOI: 10.1111/j.1399-3011.1997.tb00615.x. http://dx.doi.org/10.1111/j.1399-3011.1997.tb00615.x10.1111/j.1399-3011.1997.tb00615.xSearch in Google Scholar
[6] Barbosa, J., Roses, M., & Sanz-Nebot, V. (1988). Acid-base indicators in acetonitrile: Their pK values and chromatic parameters. Talanta, 35, 1013–1018. DOI: 10.1016/0039-9140(88)80240-6. http://dx.doi.org/10.1016/0039-9140(88)80240-610.1016/0039-9140(88)80240-6Search in Google Scholar
[7] Barbosa, J., & Sanz-Nebot, V. (1989). Acid-base equilibria and assay of benzodiazepines in acetonitrile medium. Talanta, 36, 837–842. DOI: 10.1016/0039-9140(89)80164-X. http://dx.doi.org/10.1016/0039-9140(89)80164-X10.1016/0039-9140(89)80164-XSearch in Google Scholar
[8] Barbosa, J., Sanz-Nebot, V., & Torrero, E. (1991). Equilibrium constants and assay of bases in acetonitrile. Talanta, 38, 425–432. DOI:10.1016/0039-9140(91)80081-A. http://dx.doi.org/10.1016/0039-9140(91)80081-A10.1016/0039-9140(91)80081-ASearch in Google Scholar
[9] Barbosa, J., Sanz-Nebot, V., & Torrero, M. E. (1990). Acid-base equilibria of β-blockers in acetonitrile. Journal of Pharmaceutical and Biomedical Analysis, 8, 675–679. DOI: 10.1016/0731-7085(90)80101-T. http://dx.doi.org/10.1016/0731-7085(90)80101-T10.1016/0731-7085(90)80101-TSearch in Google Scholar
[10] Bartnicka, H., Bojanowska, I., & Kalinowski, M. K. (1991). Solvent effect on the dissociation constants of aliphatic carboxylic acids. Australian Journal of Chemistry, 44, 1077–1084. DOI: 10.1071/CH9911077. http://dx.doi.org/10.1071/CH991107710.1071/CH9911077Search in Google Scholar
[11] Bates, R. G. (1973). Determination of pH; theory and practice. New York, NY, USA: Wiley. Search in Google Scholar
[12] Chasemi, J., Ahmadi, S., Kubista, M., & Forootan, A. (2003). Determination of acidity constants of 4-(2-pyridylazo)resorcinol in binary acetonitrile + water mixtures. Journal of Chemical & Engineering Data, 48, 1178–1182. DOI: 10.1021/je030116l. http://dx.doi.org/10.1021/je030116l10.1021/je030116lSearch in Google Scholar
[13] Czerwiński, A., Marassi, R., & Zamponi, S. (1991). The absorption of hydrogen and deuterium in thin palladium electrodes: Part I. Acidic solutions. Journal of Electroanalytical Chemistry, 316, 211–221. DOI: 10.1016/0022-0728(91)87047-8. http://dx.doi.org/10.1016/0022-0728(91)87047-810.1016/0022-0728(91)87047-8Search in Google Scholar
[14] Ertekin, K., Alp, S., & Yalcın, I. (2004). Determination of pK a values of azlactone dyes in non-aqueous media. Dyes and Pigments, 65, 33–38. DOI: 10.1016/j.dyepig.2004.06.011. http://dx.doi.org/10.1016/j.dyepig.2004.06.01110.1016/j.dyepig.2004.06.011Search in Google Scholar
[15] Fleischmann, M., & Pons, S. (1989). Electrochemically induced nuclear fusion of deuterium. Journal of Electroanalytical Chemistry, 261, 301–308. DOI: 10.1016/0022-0728(89)80006-3. http://dx.doi.org/10.1016/0022-0728(89)80006-310.1016/0022-0728(89)80006-3Search in Google Scholar
[16] Galster, H. (1990). pH-Messung: Grundlagen, Methoden, Anwendungen, Geräte. Weinheim, Germany: Wiley-VCH. Search in Google Scholar
[17] Greenhow, E. J., & Al-Mudarris, B. F. (1975). Metal and metalloid indicator electrodes for the non-aqueous potentiometric titration of weak acids: Comparative evaluation of group III, IV and V main-group elements. Talanta, 22, 417–424. DOI:10.1016/0039-9140(75)80089-0. http://dx.doi.org/10.1016/0039-9140(75)80089-010.1016/0039-9140(75)80089-0Search in Google Scholar
[18] Gündüz, T., Gündüz, N., Kılıc, E., Köseoğlu, F., & Öztas, S. G. (1988). Titrations in non-aqueous media. Part X. Potentiometric and conductiometric titrations of amino acids with tetrabutylammonium hydroxide in pyridine and acetonitrile solvents. Analyst, 113, 715–719. DOI: 10.1039/AN9881300715. http://dx.doi.org/10.1039/an988130071510.1039/AN9881300715Search in Google Scholar
[19] Gündüz, T., Kiliç, E., Özkan, G., Awaad, M. F., & Tastekin, M. (1990). Conductimetric and potentiometric investigation of effect of acidity on formation of homoconjugates in acetonitrile solvent. Canadian Journal of Chemistry, 68, 674–678. DOI: 10.1139/v90-103. http://dx.doi.org/10.1139/v90-10310.1139/v90-103Search in Google Scholar
[20] Harlow, G. A., Noble, C. M., & Wyld, G. E. A. (1956). Potentiometric titration of very weak acids. Titration in ethylenediamine solution using platinum electrodes. Analytical Chemistry, 28, 784–786. DOI: 10.1021/ac60113a002. http://dx.doi.org/10.1021/ac60113a00210.1021/ac60113a002Search in Google Scholar
[21] Herrador, M. Á., & González, A. G. (2002). Potentiometric titrations in acetonitrile-water mixtures: evaluation of aqueous ionisation constant of ketoprofen. Talanta, 56, 769–775. DOI: 10.1016/S0039-9140(01)00607-5. http://dx.doi.org/10.1016/S0039-9140(01)00607-510.1016/S0039-9140(01)00607-5Search in Google Scholar
[22] Hoare, J. P. (1959). Surface to volume considerations in the palladium-hydrogen-acid system. Journal of the Electrochemical Society, 106, 640–643. DOI: 10.1149/1.2427462. http://dx.doi.org/10.1149/1.242746210.1149/1.2427462Search in Google Scholar
[23] Hoare, J. P., & Schuldiner, S. (1957). Effects of hydrogen content on the resistance and the potential in the palladium-hydrogen-acid system. The Journal of Physical Chemistry, 61, 399–402. DOI: 10.1021/j150550a004. http://dx.doi.org/10.1021/j150550a00410.1021/j150550a004Search in Google Scholar
[24] Hojo, M., & Chen, Z., (1999). Appearance of maxima on conductometric titration curves of sulfonic acids and the evidence of strong homoconjugation reactions in benzonitrile. Analytical Sciences, 15, 303–306. DOI: 10.2116/analsci.15.303. http://dx.doi.org/10.2116/analsci.15.30310.2116/analsci.15.303Search in Google Scholar
[25] Izutsu, K., Nakamura, T., Arai, T., & Ohmaki, M. (1995). Some recent studies on the use of electrochemical sensors in nonaqueous solution chemistry. Electroanalysis, 7, 884–888. DOI: 10.1002/elan.1140070916. http://dx.doi.org/10.1002/elan.114007091610.1002/elan.1140070916Search in Google Scholar
[26] Izutsu, K., & Ohmaki, M. (1996). Acid-base equilibria in γ-butyrolactone studied by use of pH-ISFETs. Talanta, 43, 643–648. DOI: 10.1016/0039-9140(95)01799-2. http://dx.doi.org/10.1016/0039-9140(95)01799-210.1016/0039-9140(95)01799-2Search in Google Scholar
[27] Izutsu, K., & Yamamoto, H. (1996). Response of an iridium oxide pH-sensor in nonaqueous solutions. Comparison with other pH-sensors. Analytical Sciences, 12, 905–909. DOI: 10.2116/analsci.12.905. 10.2116/analsci.12.905Search in Google Scholar
[28] Karlberg, B., & Johansson, G. (1969). Alkaline errors of glass electrodes in non-aqueous solvents. Talanta, 16, 1545–1551. DOI: 10.1016/0039-9140(69)80215-8. http://dx.doi.org/10.1016/0039-9140(69)80215-810.1016/0039-9140(69)80215-8Search in Google Scholar
[29] Katz, M., & Glenn, R. A. (1952). Sodium aminoethoxide titration of weak acids in ethylenediamine. Analytical Chemistry, 24, 1157–1163. DOI: 10.1021/ac60067a024. http://dx.doi.org/10.1021/ac60067a02410.1021/ac60067a024Search in Google Scholar
[30] Kolthoff, I. M., Bruckenstein, S., & Chantooni, M. K., Jr. (1961). Acid-base equilibria in acetonitrile. Spectrophotometric and conductometric determination of the dissociation of various acids. Journal of the American Chemical Society, 83, 3927–3935. DOI: 10.1021/ja01480a001. http://dx.doi.org/10.1021/ja01480a00110.1021/ja01480a001Search in Google Scholar
[31] Kolthoff, I. M., & Chantooni, M. K. (1966). Conductometric, potentiometric, and spectrophotometric determination of dissociation constants of substituted benzoic acids in acetonitrile. The Journal of Physical Chemistry, 70, 856–866. DOI: 10.1021/j100875a039. http://dx.doi.org/10.1021/j100875a03910.1021/j100875a039Search in Google Scholar
[32] Kolthoff, I. M., & Chantooni, M. K. (1965). Calibration of the glass electrode in acetonitrile. Shape of potentiometric titration curves. Dissociation constant of picric acid. Journal of the American Chemical Society, 87, 4428–4436. DOI: 10.1021/ja00948a004. http://dx.doi.org/10.1021/ja00948a00410.1021/ja00948a004Search in Google Scholar
[33] Kolthoff, I. M., & Chantooni, M. K., Jr. (1975). Titration in dipolar aprotic solvents of diprotic acids as monoprotic acids. Analytical Chemistry, 47, 1921–1926. DOI: 10.1021/ac60362a001. http://dx.doi.org/10.1021/ac60362a00110.1021/ac60362a001Search in Google Scholar
[34] Kolthoff, I. M., & Chantooni, M. K., Jr. (1969). Homoconjugation constant of picric acid in acetonitrile. The Journal of Physical Chemistry, 73, 4029–4030. DOI: 10.1021/j100845a084. http://dx.doi.org/10.1021/j100845a08410.1021/j100845a084Search in Google Scholar
[35] Kolthoff, I. M., Chantooni, M. K., Jr., & Bhowmik, S. (1966). Acid-base properties of mono- and dinitrophenols in acetonitrile. Journal of the American Chemical Society, 88, 5430–5439. DOI: 10.1021/ja00975a011. http://dx.doi.org/10.1021/ja00975a01110.1021/ja00975a011Search in Google Scholar
[36] Kreshkov, A. P., Bykova, L. N., & Kazaryan, N. A. (1967). Kislotno-osnovnoe titrovanie v nevodnykh rastvorakh. Moscow, USSR: Khimia. Search in Google Scholar
[37] Kurtoğlu, M., Birbiçer, N., Kimyonşen, Ü., & Serin, S. (1999). Determination of pK a values of some azo dyes in acetonitrile with perchloric acid. Dyes and Pigments, 41, 143–147. DOI: 10.1016/S0143-7208(98)00077-1. http://dx.doi.org/10.1016/S0143-7208(98)00077-110.1016/S0143-7208(98)00077-1Search in Google Scholar
[38] Kuruoğlu, D., Canel, E., Memon, S., Yilmaz, M., & Kiliç, E. (2003). Hydrogen ion-selective poly(vinyl chloride) membrane electrode based on a calix[4]arene. Analytical Sciences, 19, 217–221. DOI: 10.2116/analsci.19.217. http://dx.doi.org/10.2116/analsci.19.21710.2116/analsci.19.217Search in Google Scholar
[39] Lewis, F. A., & Ubbelohde, A. R. (1954). Mechanisms of removal of hydrogen from palladium-hydrogen by oxidation. Journal of the Chemical Society, 1954, 1710–1716. DOI: 10.1039/JR9540001710. 10.1039/JR9540001710Search in Google Scholar
[40] Lintner, C. J., Schleif, R. H., & Higuchi, T. (1950). Electrometric titration of alcohols using lithium aluminium hydride. Analytical Chemistry, 22, 534–538. DOI: 10.1021/ac60040a007. http://dx.doi.org/10.1021/ac60040a00710.1021/ac60040a007Search in Google Scholar
[41] Mihajlović, L., Nikolić-Mandić, S., Vukanović, B., & Mihajlović, R., (2009). Use of the sulfide mineral pyrite as electrochemical sensor in non-aqueous solutions: Potentiometric titration of weak acids in acetonitrile, propionitrile and benzonitrile. Analytical Sciences, 25, 437–441. DOI: 10.2116/analsci.25.437. http://dx.doi.org/10.2116/analsci.25.43710.2116/analsci.25.437Search in Google Scholar
[42] Mihajlović, L. V., Mihajlović, R. P., Antonijević, M. M., & Vukanović, B. V. (2004). Natural monocrystalline pyrite as a sensor in non-aqueous solution: Part I: Potentiometric titration of weak acids in N,N-dimethylformamide, methylpyrrolidone and pyridine. Talanta, 64, 879–886. DOI: 10.1016/j.talanta.2004.03.061. http://dx.doi.org/10.1016/j.talanta.2004.03.06110.1016/j.talanta.2004.03.061Search in Google Scholar
[43] Mihajlović, R. P., Jakšić, L. N., & Vajgand, V. V. (1992). Coulometric titrations of bases in propylene carbonate using hydrogen—palladium and deuterium—palladium generator electrodes. Talanta, 39, 1587–1590. DOI: 10.1016/0039-9140(92)80188-J. http://dx.doi.org/10.1016/0039-9140(92)80188-J10.1016/0039-9140(92)80188-JSearch in Google Scholar
[44] Mihajlović, R. P., & Stanić Z. D. (2005). Natural monocrystalline chalcopyrite and galena as electrochemical sensors in non-aqueous solvents. Part I: potentiometric titrations of weak acids in γ-butyrolactone and propylene carbonate. Journal of Solid State Electrochemistry, 9, 558–565. DOI: 10.1007/s10008-004-0591-0. http://dx.doi.org/10.1007/s10008-004-0591-010.1007/s10008-004-0591-0Search in Google Scholar
[45] Mihajlović, R. P., Vajgand, V. J., & Džudović, R. M. (1991). The application of deuterium-palladium electrodes in the coulometric-potentiometric determination of bases in ketone media. Talanta, 38, 673–675. DOI: 10.1016/0039-9140(91)80155-S. http://dx.doi.org/10.1016/0039-9140(91)80155-S10.1016/0039-9140(91)80155-SSearch in Google Scholar
[46] Oyama, N., Hirokawa, T., Yamaguchi, S., Ushizawa, N., & Shimomura, T. (1987). Hydrogen ion selective microelectrode prepared by modifying an electrode with polymers. Analytical Chemistry, 59, 258–262. DOI: 10.1021/ac00129a009. http://dx.doi.org/10.1021/ac00129a00910.1021/ac00129a009Search in Google Scholar
[47] Pissinis, D., Sereno, L. E., & Marioli, J. M. (2005). Multiwavelength spectrophotometric determination of propofol acidity constant in different acetonitrile-water mixtures. Journal of the Brazilian Chemical Society, 16, 1054–1060. DOI: 10.1590/S0103-50532005000600024. http://dx.doi.org/10.1590/S0103-5053200500060002410.1590/S0103-50532005000600024Search in Google Scholar
[48] Sanz-Nebot, V., Valls, I., Barbero, D., & Barbosa, J. (1997). Acid-base behavior of quinolones in aqueous acetonitrile mixtures. Acta Chemica Scandinavica, 51, 896–903. DOI: 10.3891/acta.chem.scand.51-0896. http://dx.doi.org/10.3891/acta.chem.scand.51-089610.3891/acta.chem.scand.51-0896Search in Google Scholar
[49] Shirvington, P. J. (1967). The hydrolysis of some acidic metal cations in acetonitrile containing traces of water. Australian Journal of Chemistry, 20, 447–453. DOI: 10.1071/CH9670447. http://dx.doi.org/10.1071/CH967044710.1071/CH9670447Search in Google Scholar
[50] Vajgand, V. J., Mihajlović, R. P., Džudović, R. M., & Jakšić, L. N. (1987). Coulometric titration of salts of strong mineral acids in acetic anhydride by application of a hydrogen/palladium electrode. Analytica Chimica Acta, 202, 231–236. DOI: 10.1016/S0003-2670(00)85919-X. http://dx.doi.org/10.1016/S0003-2670(00)85919-X10.1016/S0003-2670(00)85919-XSearch in Google Scholar
[51] Verma, B. C., & Sood, R. K. (1979). Determination of mercaptopyrimidines with copper(II) in acetonitrile. Talanta, 26, 906–907. DOI: 10.1016/0039-9140(79)80278-7. http://dx.doi.org/10.1016/0039-9140(79)80278-710.1016/0039-9140(79)80278-7Search in Google Scholar
© 2010 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- A deuterium-palladium electrode as a new sensor in non-aqueous solutions: potentiometric titration of weak acids in acetonitrile and benzonitrile
- Chemical variability of Artemisia herba-alba Asso essential oils from East Morocco
- Ag and Cu loaded on TiO2/graphite as a catalyst for Escherichia coli-contaminated water disinfection
- Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in hyaluronic acid and single walled carbon nanotubes composite film
- Biological buffered saline solution as solvent in agar-carbomer hydrogel synthesis
- GC/MS analysis of gaseous degradation products formed during extrusion blow molding process of PE films
- Preparation, spectral, thermal, and biological properties of zinc(II) 4-chloro- and 5-chlorosalicylate complexes with methyl 3-pyridylcarbamate and phenazone
- Polyamidoamine dendrimer and dextran conjugates: preparation, characterization, and in vitro and in vivo evaluation
- Morphological characteristics of modified freeze-dried poly(N-isopropylacrylamide) microspheres studied by optical microscopy, SEM, and DLS
- Photophysical properties of novel ferrocenyl quinoline derivatives with red emission in solutions and polymeric matrices
- Preparation and characterization of hydrogels based on acryloyl end-capped four-arm star-shaped poly(ethylene glycol)-branched-oligo(l-lactide) via Michael-type addition reaction
- ArF laser photolytic deposition and thermal modification of an ultrafine chlorohydrocarbon
- Asymmetric synthesis of machilin C and its analogue
- Synthesis and study of some new N-substituted imide derivatives as potential antibacterial agents
- Single crystal X-ray structure and optical properties of anthraquinone-based dyes
- Low-density polyethylene in mixtures of hexane and benzene derivates
- Factors influencing aggregation behavior of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer in mixed solvents
- Chemical evaluation of Fallopia species leaves and antioxidant properties of their non-cellulosic polysaccharides
- Rapid synthesis and bioactivities of 3-(nitromethylene)indolin-2-one analogues
- ZnO nanorods catalyzed N-alkylation of piperidin-4-one, 4(3H)-pyrimidone, and ethyl 6-chloro-1,2-dihydro-2-oxo-4-phenylquinoline-3-carboxylate
Articles in the same Issue
- A deuterium-palladium electrode as a new sensor in non-aqueous solutions: potentiometric titration of weak acids in acetonitrile and benzonitrile
- Chemical variability of Artemisia herba-alba Asso essential oils from East Morocco
- Ag and Cu loaded on TiO2/graphite as a catalyst for Escherichia coli-contaminated water disinfection
- Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in hyaluronic acid and single walled carbon nanotubes composite film
- Biological buffered saline solution as solvent in agar-carbomer hydrogel synthesis
- GC/MS analysis of gaseous degradation products formed during extrusion blow molding process of PE films
- Preparation, spectral, thermal, and biological properties of zinc(II) 4-chloro- and 5-chlorosalicylate complexes with methyl 3-pyridylcarbamate and phenazone
- Polyamidoamine dendrimer and dextran conjugates: preparation, characterization, and in vitro and in vivo evaluation
- Morphological characteristics of modified freeze-dried poly(N-isopropylacrylamide) microspheres studied by optical microscopy, SEM, and DLS
- Photophysical properties of novel ferrocenyl quinoline derivatives with red emission in solutions and polymeric matrices
- Preparation and characterization of hydrogels based on acryloyl end-capped four-arm star-shaped poly(ethylene glycol)-branched-oligo(l-lactide) via Michael-type addition reaction
- ArF laser photolytic deposition and thermal modification of an ultrafine chlorohydrocarbon
- Asymmetric synthesis of machilin C and its analogue
- Synthesis and study of some new N-substituted imide derivatives as potential antibacterial agents
- Single crystal X-ray structure and optical properties of anthraquinone-based dyes
- Low-density polyethylene in mixtures of hexane and benzene derivates
- Factors influencing aggregation behavior of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer in mixed solvents
- Chemical evaluation of Fallopia species leaves and antioxidant properties of their non-cellulosic polysaccharides
- Rapid synthesis and bioactivities of 3-(nitromethylene)indolin-2-one analogues
- ZnO nanorods catalyzed N-alkylation of piperidin-4-one, 4(3H)-pyrimidone, and ethyl 6-chloro-1,2-dihydro-2-oxo-4-phenylquinoline-3-carboxylate