Home Physical Sciences Changes in the cell parameters of antigorite close to its dehydration reaction at subduction zone conditions
Article
Licensed
Unlicensed Requires Authentication

Changes in the cell parameters of antigorite close to its dehydration reaction at subduction zone conditions

  • Tingting Shen , Cong Zhang EMAIL logo , Jing Chen , Jörg Hermann , Lifei Zhang , José Alberto Padrón-Navarta ORCID logo , Li Chen , Jun Xu and Jingsui Yang
Published/Copyright: April 2, 2020
Become an author with De Gruyter Brill

Abstract

The unit-cell parameter a of antigorite (usually expressed as the polysome m value) has been determined as a function of temperature (T) and pressure (P) in the range of 600–650 °C, 25–45 kbar in weeklong piston-cylinder experiments. A well-characterized natural antigorite (with m = 16 and less abundant m = 15) was used as a starting material that coexisted with olivine, chlorite, Ti-humite, and aqueous fluid at run conditions. Transmission electron microscope (TEM) measurements on selected focused ion beam (FIB) wafers showed that antigorite m values after the experiments varied between 14 and 22. More than 40 punctual analyses for each run condition were acquired to determine the range and the primary m value. The most frequent antigorite m-value decreased systematically from 17–19 at 600 °C to 15–16 at 650 °C. The spacing of the m-isolines is getting narrower as the antigorite breakdown reaction is approached. The topology of the m-isolines is similar to that previously characterized for the simple MgO-SiO2-H2O (MSH) system. However, the isolines are shifted to about 50–100 °C higher temperatures due to the incorporation of Al into antigorite. Powder samples and FIB wafers of natural antigorite from the Tianshan UHP belt (China) with peak metamorphic conditions of ~35 kbar, ~520 °C were also investigated with TEM. Low Al-antigorite formed at peak metamorphic conditions displays a peak m value of 20–21, whereas high-Al antigorite formed during isothermal decompression displays a lower m value of 19. Combination of our results with the published data of m values from metamorphic antigorite that experienced various conditions allowed construction of a P-T-m diagram that can be used in future studies to better constrain formation conditions of serpentinites. The decrease of m values and the increase of Al in antigorite with increasing temperature result in small, continuous dehydration whereby the H2O content of antigorite changes from 12.4 to 12.1 wt%. Therefore, it is expected that a pore fluid is present during the prograde deformation of serpentinites. TEM observations showed that antigorite adjusted its Al content by segregation of chlorite at the nanoscale. Together with the observation that multiple m values are always present in a single sample, this result indicates that full equilibration of antigorite at the micrometer-scale is rare, with important implications for the interpretation of geochemical signatures obtained by in situ techniques.

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Nos. 41872067, 41572051, 41972064, 41630207, 41703053, 41720104009, 41802070), Project of China Geological Survey (No. DD20190006), and Foundation of Chinese Academy of Geological Sciences (Nos. J 1701, YYWF201702). We thank the China Scholarship Council for supporting the 12 mo visit of T. T. Shen at RSES, The Australian National University. We thank M. Mellini and an anonymous reviewer and associate editor T. Müller for constructive comments that helped improve the quality of the paper.

References cited

Alt, J.C., Garrido, C.J., Shanks, W.C., Turchyn, A., Padrón-Navarta, J.A., López Sánchez-Vizcaíno, V., Gómez Pugnaire, M.T., and Marchesi, C. (2012) Recycling of water, carbon, and sulfur during subduction of serpentinites: A stable isotope study of Cerro del Almirez, Spain. Earth and Planetary Science Letters, 327-328, 50–60.10.1016/j.epsl.2012.01.029Search in Google Scholar

Amiguet, E., Reynard, B., Caracas, R., Van de Moortèle, B., Hilairet, N., and Wang, Y. (2012) Creep of phyllosilicates at the onset of plate tectonics. Earth and Planetary Science Letters, 345-348, 142–150.10.1016/j.epsl.2012.06.033Search in Google Scholar

Amiguet, E., Van De Moortèle, B., Cordier, P., Hilairet, N., and Reynard, B. (2014) Deformation mechanisms and rheology of serpentines in experiments and in nature. Journal of Geophysical Research: Solid Earth, 119(6), 4640–4655.10.1002/2013JB010791Search in Google Scholar

Aruja, E. (1944) An X‑ray study of the crystal structure of antigorite. Mineralogical Magazine, 27, 65–74.10.1180/minmag.1945.027.188.03Search in Google Scholar

Auzende, A., Devouard, B., Guillot, S., Daniel, I., Baronnet, A., and Lardeaux, J.M. (2002) Serpentinites from Central Cuba: petrology and HRTEM study. European Journal of Mineralogy, 14, 905–914.10.1127/0935-1221/2002/0014-0905Search in Google Scholar

Auzende, A., Guillot, S., Devouard, B., and Baronnet, A. (2006) Serpentinites in an Alpine convergent setting: effects of metamorphic grade and deformation on microstructures. European Journal of Mineralogy, 18, 21–33.10.1127/0935-1221/2006/0018-0021Search in Google Scholar

Bebout, G.E., Bebout, A.E., and Graham, C.M. (2007) Cycling of B, Li, and LILE (K, Cs, Rb, Ba, Sr) into subduction zones: SIMS evidence from micas in high-P/T metasedimentary rocks. Chemical Geology, 239, 284–304.10.1016/j.chemgeo.2006.10.016Search in Google Scholar

Bezacier, L., Reynard, B., Cardon, H., Montagnac, G., and Bass, J.D. (2013) High-pressure elasticity of serpentine and seismic properties of the hydrated mantle wedge. Journal of Geophysical Research: Solid Earth, 118, 527–535. doi:10.1002/jgrb.50076.10.1002/jgrb.50076Search in Google Scholar

Bonatti, E., and Crane, K. (1984) Oceanic Fracture Zones. Scientific American, 250, 40–51.10.1038/scientificamerican0584-40Search in Google Scholar

Bose, K., and Navrotsky, A. (1998) Thermochemistry and phase equilibria of hydrous phases in the system MgO-SiO2-H2O: Implications for volatile transport to the mantle. Journal of Geophysical Research, 103, 9713–9719.10.1029/98JB00506Search in Google Scholar

Bretscher, A., Hermann, J., and Pettke, T. (2018) The influence of oceanic oxidation on serpentinite dehydration during subduction. Earth and Planetary Science Letters, 499, 173–184.10.1016/j.epsl.2018.07.017Search in Google Scholar

Bromiley, G.D., and Pawley, A.R. (2003) The stability of antigorite in the systems MgO-SiO2-H2O (MSH) and MgO-Al2O3-SiO2-H2O. American Mineralogist, 88, 99–108.10.2138/am-2003-0113Search in Google Scholar

Capitani, G., and Mellini, M. (2004) The modulated crystal structure of antigorite; the m = 17 polysome. American Mineralogist, 89, 147–158.10.2138/am-2004-0117Search in Google Scholar

Capitani, G., and Mellini, M. (2006) The crystal structure of a second antigorite polysome m = 16), by single-crystal synchrotron diffraction. American Mineralogist, 91, 394–399.10.2138/am.2006.1919Search in Google Scholar

Chen, L., Xu, J., and Chen, J. (2015) Applications of scanning electron microscopy in earth sciences. Science China: Earth Sciences, 58, 1768–1778, doi: 10.1007/s11430-015-5172-9.10.1007/s11430-015-5172-9Search in Google Scholar

Debret, B., Andreani, M., Godard, M., Nicollet, C., Schwartz, S., and Lafay, R. (2013) Trace element behavior during serpentinization/de-serpentinization of an eclogitized oceanic lithosphere: A LA-ICPMS study of the Lanzo ultramafic massif (Western Alps). Chemical Geology, 357, 117–133.10.1016/j.chemgeo.2013.08.025Search in Google Scholar

Debret, B., Bolfan-Casanova, N., Padrón-Navarta, J.A., Martin-Hernandez, F., Andreani, M., Garrido, C.J., López Sánchez-Vizcaíno, V., Gómez-Pugnaire, M.T., Muñoz, M., and Trcera, N. (2015) Redox state of iron during high-pressure serpentinite dehydration. Contributions to Mineralogy and Petrology, 169.10.1007/s00410-015-1130-ySearch in Google Scholar

Deschamps, F., Guillot, S., Godard, M., Chauvel, C., Andreani, M., and Hattori, K. (2010) In situ characterization of serpentinites from forearc mantle wedges: timing of serpentinization and behavior of fluid-mobile elements in subduction zones. Chemical Geology, 269, 262–277.10.1016/j.chemgeo.2009.10.002Search in Google Scholar

Deschamps, F., Guillot, S., Godard, M., Andreani, M., and Hattori, K. (2011) Serpentinites act as sponges for fluid-mobile elements in abyssal and subduction zone environments. Terra Nova, 23, 171–178.10.1111/j.1365-3121.2011.00995.xSearch in Google Scholar

Deschamps, F., Godard, M., Guillot, S., Chauvel, C., Andreani, M., Hattori, K., Wunder, B., and France, L. (2012) Behavior of fluid-mobile elements in serpentines from abyssal to subduction environments: Examples from Cuba and Dominican Republic. Chemical Geology, 312-313, 93–117.10.1016/j.chemgeo.2012.04.009Search in Google Scholar

Deschamps, F., Godard, M., Guillot, S., and Hattori, K. (2013) Geochemistry of subduction zone serpentinites: A review. Lithos, 178, 96–127.10.1016/j.lithos.2013.05.019Search in Google Scholar

Evans, B.W. (2004) The serpentinite multisystem revisited: chrysotile is metastable. International Geology Review, 46, 479–506.10.2747/0020-6814.46.6.479Search in Google Scholar

Evans, B.W., Johannes, W., Oterdoom, H., and Tommsdorff, V. (1976) Stability of crysotile and antigorite in the serpentinite multisystem. Schweizerische Mineralogische und Petrographische Mitteilungen, 56, 79–93.Search in Google Scholar

Evans, B.W., Hattori, K., and Baronnet, A. (2013) Serpentinite: What, Why, Where? Elements, 9, 99–106.10.2113/gselements.9.2.99Search in Google Scholar

Frost, B.R. (1975) Contact metamorphism of serpentinite, chloritic blackwall and rodingite at Paddy-Go-Easy Pass, Central Cascades, Washington. Journal of Petrology, 16, 272–313.10.1093/petrology/16.1.272Search in Google Scholar

Garrido, C.J., López Sánchez-Vizcaíno, V., Gómez-Pugnaire, M.T., Trommsdorff, V., Alard, O., Bodinier, J.L., and Godard, M. (2005) Enrichment of HFSE in chloriteharzburgite produced by high-pressure dehydration of antigorite-serpentinite: Implications for subduction magmatism. Geochemistry, Geophysics, Geosystems, 6, Q01J15. doi:10.1029/2004GC000791.10.1029/2004GC000791Search in Google Scholar

Ghaderi, N., Zhang, H., and Sun, T. (2015) Relative stability and contrasting elastic properties of serpentine polymorphs from first-principles calculations. Journal of Geophysical Research: Solid Earth, 120, 4831–4842.10.1002/2015JB012148Search in Google Scholar

Harvey, J., Garrido, C.J., Savov, I., Agostini, S., Padrón-Navarta, J.A., Marchesi, C., López Sánchez-Vizcaíno, V., and Gómez-Pugnaire, M.T. (2014) 11B-rich fluids in subduction zones: The role of antigorite dehydration in subducting slabs and boron isotope heterogeneity in the mantle. Chemical Geology, 376, 20–30.10.1016/j.chemgeo.2014.03.015Search in Google Scholar

Hattori, K.H., and Guillot, S. (2003) Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge. Geology, 31, 525–528.10.1130/0091-7613(2003)031<0525:VFFAAC>2.0.CO;2Search in Google Scholar

Hattori, K.H., and Guillot, S. (2007) Geochemical character of serpentinites associated with high- to ultrahigh-pressure metamorphic rocks in the Alps, Cuba, and the Himalayas: recycling of elements in subduction zones. Geochemistry, Geophysics, Geosystems, 8, http://dx.doi.org/10.1029/2007GC00159410.1029/2007GC001594Search in Google Scholar

Hermann, J., Müntener, O., and Scambelluri, M. (2000) The importance of serpentine mylonites for subduction and exhumation of oceanic crust. Tectonophysics, 327, 225–238.10.1016/S0040-1951(00)00171-2Search in Google Scholar

Hermann, J., Rubatto, D., and Trommsdorff, V. (2006) Sub-solidus Oligocene zircon formation in garnet peridotite during fast decompression and fluid infiltration (Duria, Central Alps). Mineralogy and Petrology, 88, 181–206.10.1007/s00710-006-0155-3Search in Google Scholar

Hilairet, N., Daniel, I., and Reynard, B. (2006) Equation of state of antigorite, stability field of serpentines, and seismicity in subduction zones. Geophysical Research Letters, 33, L02302. doi:10.1029/2005GL024728.10.1029/2005GL024728Search in Google Scholar

Hilairet, N., Reynard, B., Wang, Y.B., Daniel, I., Merkel, S., Nishiyama, N., and Petitgirard, S. (2007) High-pressure creep of serpentine, interseismic deformation, and initiation of subduction. Science, 318, 1910–1913.10.1126/science.1148494Search in Google Scholar

Hyndman, R.D., and Peacock, S.M. (2003) Serpentinization of the forearc mantle. Earth and Planetary Science Letters, 212, 417–432.10.1016/S0012-821X(03)00263-2Search in Google Scholar

Iwamori, H., and Zhao, D. (2000) Melting and seismic structure beneath the northeast Japan arc. Geophysical Research Letters, 27, 425–428.10.1029/1999GL010917Search in Google Scholar

Jahanbagloo, C., and Zoltai, T. (1968) The crystal structure of a hexagonal Al-serpentine. American Mineralogist, 53, 14–24.Search in Google Scholar

Janecky, D.R., and Seyfried, W.E. (1986) Hydrothermal serpentinization of peridotite within the oceanic crust: Experimental investigations of mineralogy and major element chemistry. Geochimica et Cosmochimica Acta, 50, 1357–1378.10.1016/0016-7037(86)90311-XSearch in Google Scholar

Kawakatsu, H., and Watada, S. (2007) Seismic evidence for deep-water transportation in the mantle. Science, 316, 1468–1471.10.1126/science.1140855Search in Google Scholar PubMed

Kodolányi, J., and Pettke, T. (2011) Loss of trace elements from serpentinites during fluid-assisted transformation of chrysotile to antigorite—An example from Guatemala. Chemical Geology, 284, 351–362.10.1016/j.chemgeo.2011.03.016Search in Google Scholar

Kunze, V.G. (1956) Die gewellte struktur des antigorits, I. Zeitschrift für Kristallog-raphie, 108, 82–107.10.1524/zkri.1956.108.1-2.82Search in Google Scholar

Kunze, V.G. (1958) Die gewellte struktur des antigorits, II. Zeitschrift für Kristallographie, 110, 282–320.10.1524/zkri.1958.110.16.282Search in Google Scholar

Kunze, V.G. (1961) Antigorit. Strukturtheoretische Grundlagen und ihre praktische Bedeutung fdr die weitere Serpentin-Forschung. Fortschritte der Mineralogie, 39, 206–324.Search in Google Scholar

López Sánchez-Vizcaíno, V., Trommsdorff, V., Gómez-Pugnaire, M. T., Garrido, C.J., Müntener, O., and Connolly, J.A.D. (2005) Petrology of titanian clinohumite and olivine at the high-pressure breakdown of antigorite serpentinite to chlorite harzburgite (Almirez Massif, S. Spain). Contributions to Mineralogy and Petrology, 149, 627–646.10.1007/s00410-005-0678-3Search in Google Scholar

Marchesi, C., Garrido, C.J., Padrón-Navarta, J.A., López Sánchez-Vizcaíno, V., and Gómez-Pugnaire, M.T. (2013) Element mobility from seafloor serpentinization to high-pressure dehydration of antigorite in subducted serpentinite: Insights from the Cerro del Almirez ultramafic massif (southern Spain). Lithos, 178, 128–142.10.1016/j.lithos.2012.11.025Search in Google Scholar

Maurice, J., Bolfan-Casanova, N., Padrón-Navarta, J.A., Manthilake, G., Hammouda, T., Hénot, J.M., and Andrault, D. (2018) The stability of hydrous phases beyond antigorite breakdown for a magnetite-bearing natural serpentinite between 6.5 and 11 GPa. Contributions to Mineralogy and Petrology, 173, 86.10.1007/s00410-018-1507-9Search in Google Scholar

Mellini, M. (1986) Chrysotile and polygonal serpentine from the Balangero serpentinite. Mineralogical Magazine, 50, 301–305.10.1180/minmag.1986.050.356.17Search in Google Scholar

Mellini, M., Trommsdorff, V., and Compagnoni, R. (1987) Antigorite polysomatism: Behaviour during progressive metamorphism. Contributions to Mineralogy and Petrology, 97, 147–155.10.1007/BF00371235Search in Google Scholar

Messiga, B., Kienast, J.R., Rebay, G., Riccardi, P., and Tribuzio, R. (1999) Cr-rich magnesiochloritoïd eclogites from the Monviso ophiolites (Western Alps, Italy). Journal of Metamorphic Geology, 17, 287–299.10.1046/j.1525-1314.1999.00198.xSearch in Google Scholar

Nestola, F., Angel, R. J., Zhao, J., Garrido, C.J., Sánchez-Vizcaíno, V.L., Capitani, G., and Mellini, M. (2010) Antigorite equation of state and anomalous softening at 6 GPa: an in situ single-crystal X‑ray diffraction study. Contributions to Mineralogy and Petrology, 160, 33–43.10.1007/s00410-009-0463-9Search in Google Scholar

Padrón-Navarta, J.A., and Hermann, J. (2017) A subsolidus olivine water solubility equation for the Earth’s upper mantle. Journal of Geophysical Research: Solid Earth, 122, 9862–9880. https://doi.org/10.1002/2017JB01451010.1002/2017JB014510Search in Google Scholar

Padrón-Navarta, J.A., López Sánchez-Vizcaíno, V., Garrido, C.J., Gómez-Pugnaire, M.T., Jabaloy, A., Capitani, G., and Mellini, M. (2008) Highly ordered antigorite from Cerro del Almirez HP–HT serpentinites, SE Spain. Contributions to Mineralogy and Petrology, 156, 679–688.10.1007/s00410-008-0309-xSearch in Google Scholar

Padrón-Navarta, J.A., Hermann, J., Garrido, C.J., López Sánchez-Vizcaíno, V., and Gómez-Pugnaire, M. T. (2010) An experimental investigation of antigorite dehydration in natural silica-enriched serpentinite. Contributions to Mineralogy and Petrology, 159, 25–42.10.1007/s00410-009-0414-5Search in Google Scholar

Padrón-Navarta, J.A., López Sánchez-Vizcaíno, V., Garrido, C.J., and Gómez-Pugnaire, M.T. (2011) Metamorphic record of high-pressure dehydration of antigorite serpentinite to chlorite harzburgite in a subduction setting (Cerro del Almirez, Nevado-Filabride Complex, Southern Spain). Journal of Petrology, 52, 2047–2078.10.1093/petrology/egr039Search in Google Scholar

Padrón-Navarta, J.A., Tommasi, A., Garrido, C.J., and López Sánchez-Vizcaíno, V. (2012) Plastic deformation and development of antigorite crystal preferred orientation in high-pressure serpentinites. Earth and Planetary Science Letters, 349-350, 75–86.10.1016/j.epsl.2012.06.049Search in Google Scholar

Padrón-Navarta, J.A., López Sánchez-Vizcaíno, V., Hermann, J., Connolly, J.A.D., Garrido, C.J., Gómez-Pugnaire, M.T., and Marchesi, C. (2013) Tschermak’s substitution in antigorite and consequences for phase relations and water liberation in high-grade serpentinites. Lithos, 178, 186–196.10.1016/j.lithos.2013.02.001Search in Google Scholar

Padrón-Navarta, J.A., Tommasi, A., Garrido, C.J., and Mainprice, D. (2015) On topotaxy and compaction during antigorite and chlorite dehydration: an experimental and natural study. Contributions to Mineralogy and Petrology, 169, 35. doi: 10.1007/s00410-015-1129-4.10.1007/s00410-015-1129-4Search in Google Scholar

Perrillat, J., Daniel, I., Koga, K., Reynard, B., Cardon, H., and Crichton, W. (2005) Kinetics of antigorite dehydration: A real-time X‑ray diffraction study. Earth and Planetary Science Letters, 236, 899–913.10.1016/j.epsl.2005.06.006Search in Google Scholar

Peters, D., Bretscher, A., John, T., Scambelluri, M., and Pettke, T. (2017) Fluid-mobile elements in serpentinites: Constraints on serpentinisation environments and element cycling in subduction zones. Chemical Geology, 466, 654–666.10.1016/j.chemgeo.2017.07.017Search in Google Scholar

Reynard, B., and Wunder, B. (2006) High-pressure behavior of synthetic antigorite in the MgO-SiO2-H2O system from Raman spectroscopy. American Mineralogist, 91, 459–462.10.2138/am.2006.2069Search in Google Scholar

Rüpke, L.H., Morgan, J.P., Hort, M., and Connolly, J.A.D. (2004) Serpentine and the subduction zone water cycle. Earth and Planetary Science Letters, 223, 17–34.10.1016/j.epsl.2004.04.018Search in Google Scholar

Scambelluri, M., Müntener, O., Hermann, J., Piccardo, G.B., and Trommsdorff, V. (1995) Subduction of water into the mantle: History of an Alpine peridotite. Geology, 23, 459–462.10.1130/0091-7613(1995)023<0459:SOWITM>2.3.CO;2Search in Google Scholar

Scambelluri, M., Rampone, E., and Piccardo, G.B. (2001) Fluid and element cycling on subducted serpentinite: a trace-element study of the Erro-Tobbio high-pressure ultramafites (Western Alps, NW Italy). Journal of Petrology, 42, 55–67.10.1093/petrology/42.1.55Search in Google Scholar

Scambelluri, M., Fiebig, J., Malaspina, N., Müntener, O., and Pettke, T. (2004a) Serpentinite subduction: Implications for fluid processes and trace-element recycling. International Geology Review, 46, 595–613.10.2747/0020-6814.46.7.595Search in Google Scholar

Scambelluri, M., Müntener, O., Ottolini, L., Pettke, T. T., and Vannucci, R. (2004b) The fate of B, Cl and Li in the subducted oceanic mantle and in the antigorite breakdown fluids. Earth and Planetary Science Letters, 222, 217–234.10.1016/j.epsl.2004.02.012Search in Google Scholar

Scambelluri, M., Pettke, T., Rampone, E., Godard, M., and Reusser, E. (2014) Petrology and trace element budgets of high-pressure peridotites indicate subduction dehydration of serpentinized mantle (Cima di Gagnone, Central Alps, Switzerland). Journal of Petrology, 55, 459–498.10.1093/petrology/egt068Search in Google Scholar

Scambelluri, M., Cannaò, E., and Gilio, M. (2019) The water and fluid-mobile element cycles during serpentinite subduction. A review. European Journal of Mineralogy, https://doi.org/10.1127/ejm/2019/0031-284210.1127/ejm/2019/0031-2842Search in Google Scholar

Schmidt, M.W., and Poli, S. (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth and Planetary Science Letters, 163, 361–379.10.1016/S0012-821X(98)00142-3Search in Google Scholar

Schwartz, S., Allemand, P., and Guillot, S. (2001) Numerical model of effect of serpentinites on the exhumation of eclogitic rocks: insights from the Monviso ophiolitic massif (Western Alps). Tectonophysics, 342, 193–206.10.1016/S0040-1951(01)00162-7Search in Google Scholar

Schwartz, S., Guillot, S., Reynard, B., Lafay, R., Debret, B., Nicollet, C., Lanari, P., and Auzende, A.L. (2013) Pressure-temperature estimates of the lizardite/antigorite transition in high pressure serpentinites. Lithos, 178, 197–210.10.1016/j.lithos.2012.11.023Search in Google Scholar

Scicchitano, M.R., Rubatto, D., Hermann, J., Shen, T.T., Padrón-Navarta, J.A., Williams, I.S., and Zheng, Y.F. (2018) In situ oxygen isotope determination in serpentine minerals by ion microprobe: reference materials and applications to ultrahigh-pressure serpentinites. Geostandards and Geoanalytical Research, 42, 459–479. https://doi.org/10.1111/ggr.1223210.1111/ggr.12232Search in Google Scholar

Shen, T.T., Hermann, J., Zhang, L.F., Padrón-Navarta, J.A., and Chen, J. (2014) FTIR spectroscopy of Ti-chondrodite, Ti-clinohumite, and olivine in deeply subducted serpentinites and implications for the deep water cycle. Contributions to Mineralogy and Petrology, 167, 992.10.1007/s00410-014-0992-8Search in Google Scholar

Shen, T.T., Hermann, J., Zhang, L.F., Lü, Z., Padrón-Navarta, J.A., Xia, B., and Bader, T. (2015) UHP metamorphism documented in Ti-chondrodite- and Ti-clinohumite-bearing serpentinized ultramafic rocks from Chinese Southwestern Tianshan. Journal of Petrology, 56, 1425–1458.10.1093/petrology/egv042Search in Google Scholar

Shen, T.T., Zhang, L.F., and Chen, J. (2016) Metamorphism of subduction zone serpentinite. Acta Petrologica Sinica, 32, 1206–1218 (in Chinese with English abstract).Search in Google Scholar

Spear, F.S. (1993) Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths, 799 p. Mineralogical Society of America, Monograph Series.Search in Google Scholar

Syracuse, E.M., van Keken, P.E., and Abers, G.A. (2010) The global range of subduction zone thermal models. Physics of the Earth and Planetary Interiors, 183, 73–90.10.1016/j.pepi.2010.02.004Search in Google Scholar

Thompson, J.B. Jr. (1978) Biopyriboles and polysomatic series. American Mineralogist, 63, 239–249.Search in Google Scholar

Trommsdorff, V. (1983) Metamorphose magnesiumreicher Gesteine: Kritischer Vergleich von Natur, Experiment und thermodynamischer Datenbasis. Fortschritte der Mineralogie, 61, 283–308.Search in Google Scholar

Trommsdorff, V., and Evans, B.W. (1972) Progressive metamorphism of antigorite schist in the Bergell tonalite aureole (Italy). American Journal of Science, 272, 423–437.10.2475/ajs.272.5.423Search in Google Scholar

Trommsdorff, V., and Evans, B.W. (1974) Alpine metamorphism of peridotite rocks. Schweizerische Mineralogische und Petrographische Mitteilungen, 54, 333–352.Search in Google Scholar

Trommsdorff, V., and Evans, B.W. (1980) Titanian hydroxyl-clinohumite: Formation and breakdown in antigorite rocks (Malenco, Italy). Contributions to Mineralogy and Petrology, 72, 229–242.10.1007/BF00376142Search in Google Scholar

Trommsdorff, V., López Sánchez-Vizcaíno, V., Gómez-Pugnaire, M.T., and Müntener, O. (1998) High pressure breakdown of antigorite to spinifex-textured olivine and orthopyroxene, SE Spain. Contributions to Mineralogy and Petrology, 132, 139–148.10.1007/s004100050412Search in Google Scholar

Uehara, S. (1998) TEM and XRD studies of antigorite superstructure. Canadian Mineralogist, 36, 1595–1605.Search in Google Scholar

Uehara, S., and Kamata, K. (1994) Antigorite with a large supercell from Saganoseki, Oita Prefecture, Japan. Canadian Mineralogist, 32, 93–103.Search in Google Scholar

Uehara, S., and Shirozu, H. (1985) Variations in chemical composition and structural properties of antigorites. Mineralogical Journal, 12, 299–318.10.2465/minerj.12.299Search in Google Scholar

Ulmer, P., and Trommsdorff, V. (1995) Serpentine stability to mantle depths and subduction- related magmatism. Science, 268, 858–861.10.1126/science.268.5212.858Search in Google Scholar PubMed

Ulmer, P., and Trommsdorff, V. (1999) Phase relations of hydrous mantle subducting to 300 km. Mantle Petrology, 259–281.Search in Google Scholar

Viti, C., and Mellini, M. (1996) Vein antigorites from Elba Island, Italy. European Journal of Mineralogy, 8, 423–434.10.1127/ejm/8/2/0423Search in Google Scholar

Wassmann, S., Stöckhert, B., and Trepmann, C.A. (2011) Dissolution precipitation creep versus crystalline plasticity in high-pressure metamorphic serpentinites. Geological Society, London, Special Publications, 360(1), 129–149.10.1144/SP360.8Search in Google Scholar

Whitney, D.L., and Evans, B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185–187.10.2138/am.2010.3371Search in Google Scholar

Whittaker, E.J.W. (1953) The structure of chrysotile. Acta Crystallographica, 6, 747–748.10.1107/S0365110X53002118Search in Google Scholar

Whittaker, E.J.W. (1956) The structure of chrysotile. II. Clino-chrysotile. Acta Crystallographica, 9, 855–862.10.1107/S0365110X5600245XSearch in Google Scholar

Worden, R.H., Droop, G.T.R., and Champness, E. (1991) The reaction antigorite ↔ olivine + talc + H2O in the Bergell aureole, N. Italy. Mineralogical Magazine, 55, 367–377.10.1180/minmag.1991.055.380.07Search in Google Scholar

Wunder, B., and Schreyer, W. (1997) Antigorite: High-pressure stability in the system MgO-SiO2-H2O (MSH). Lithos, 41, 213–227.10.1016/S0024-4937(97)82013-0Search in Google Scholar

Wunder, B., Wirth, R., and Gottschalk, M. (2001) Antigorite: Pressure and temperature dependence of polysomatism and water content. European Journal of Mineralogy, 13, 485–495.10.1127/0935-1221/2001/0013-0485Search in Google Scholar

Zussman, J. (1954) Investigation of the crystal structure of antigorite. Mineralogical Magazine, 30, 498–512.10.1180/minmag.1954.030.227.02Search in Google Scholar

Received: 2019-06-18
Accepted: 2019-11-23
Published Online: 2020-04-02
Published in Print: 2020-04-28

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.2.2026 from https://www.degruyterbrill.com/document/doi/10.2138/am-2020-7159/pdf
Scroll to top button