Home Dual dynamic voltammetric study of the formation of ferrate ions during the electrochemical dissolution of white cast iron in the transpassive region
Article
Licensed
Unlicensed Requires Authentication

Dual dynamic voltammetric study of the formation of ferrate ions during the electrochemical dissolution of white cast iron in the transpassive region

  • Ábel Zsubrits ORCID logo , Miklós Kuti ORCID logo , Éva Fekete ORCID logo and Győző G. Láng EMAIL logo
Published/Copyright: July 11, 2025

Abstract

Electrochemical synthesis is an effective method for ferrate ion (FeO42−) production. Ferrate ion production and oxygen evolution happen simultaneously during the transpassive anodic dissolution of iron and many iron-containing electrodes; the voltametric curves obtained during the experiments show only the total current produced by these two processes. Products from the aforementioned processes were examined in 45 % (m/m) aqueous NaOH solutions using the combination of dual dynamic voltammetry (DDV) with the rotating ring-disk electrode (RRDE) method (i.e., applying dynamic potential programs to the disk and the ring electrodes of the RRDE tip simultaneously). White cast iron (WCI) disk/Pt ring RRDE tips were used in the experiments. The electrode potential regions where ferrate ions and oxygen are formed could be efficiently identified by employing the DDV technique in conjunction with spectrophotometric data. The most suitable potential range for the electrochemical generation of ferrate ions in terms of current efficiency could also be determined. The results were compared to previous investigations using high-purity iron electrodes. The approach presented in this study indicated great potential for the concurrent detection of various dissolution products and offers opportunities for the initial assessment of the most favorable parameters in large-scale industrial operations through the utilization of small-scale systems.


Corresponding author: Győző G. Láng, Institute of Chemistry, Eötvös Loránd University, Pázmány P. S. 1/A, H-1117, Budapest, Hungary, E-mail:

Acknowledgements

This work was performed in the frame of the 2018–1.1.2-KFI-2018-00123 project, implemented with the support provided by the National Research, Development and Innovation Fund of Hungary, financed under the 2018–1.1.2-KFI funding scheme. G.G. Láng and É. Fekete thank for grants from the National Research, Development, and Innovation Office (NKFIH, Hungary), grant nos. K 129210, FK135375. The publication was created as part of the Momentum Programme of the Hungarian Academy of Sciences (grant LP2022–18/2022). The dual voltammetric measurement apparatus was provided by Dr. Soma Vesztergom, for which the authors are grateful.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: National Research, Development and Innovation Fund of Hungary, financed under the 2018-1.1.2-KFI funding scheme (2018-1.1.2-KFI-2018-00123 project). National Research, Development, and Innovation Office (NKFIH, Hungary), grant nos. K 129210, FK135375. Momentum Programme of the Hungarian Academy of Sciences (grant LP2022–18/2022).

  7. Data availability: The data that support the findings of this study are available from the corresponding author, G.G.L., upon reasonable request.

  8. Comment: This manuscript is based on the poster and short lecture entitled “On the electrochemical production of ferrate ions – in situ detection of the product using dual dynamic voltammetry” presented during the “6th Erwin Schrödinger Symposium 2023: From Nanostructure to Function 4th European Conference on Physical Chemistry–ECPC23” October 9-11, 2023, Vorarlberg University of Applied Sciences, Dornbirn, Vorarlberg, Austria, Book of Abstract p.31, Abstract number P18.

References

1. Yu, J.; Sumita, Z. K.; Zhu, Q.; Wu, C.; Huang, S.; Zhang, Y.; Yao, S.; Pang, W. A Review of Research Progress in the Preparation and Application of Ferrate(VI). Water 2023, 15, 699. https://doi.org/10.3390/w15040699.Search in Google Scholar

2. Sharma, V. K. Potassium Ferrate (VI): An Environmentally Friendly Oxidant. Adv. Environ. Res. 2002, 6, 143–156. https://doi.org/10.1016/S1093-0191(01)00119-8.Search in Google Scholar

3. Delaude, L.; Laszlo, P. A Novel Oxidizing Reagent Based on Potassium Ferrate(VI). J. Org. Chem. 1996, 61, 6360–6370. https://doi.org/10.1021/jo960633p.Search in Google Scholar PubMed

4. Jiang, J.-Q.; Panagoulopoulos, A.; Bauer, M.; Pearce, P. The Application of Potassium Ferrate for Sewage Treatment. J. Env. Man, 2006, 79, 215–220. https://doi.org/10.1016/j.jenvman.2005.06.009.Search in Google Scholar PubMed

5. Vizsolyi, É. C.; Katona, K.; Láng, G. G.; Varga, J.; Záray, G. Effect of Cations and Ferric-Oxide/hydroxide Precipitation on the Removal of Chlorobenzene Compounds from Model Solutions Applying Ferrate Treatment. Desalin. Water Treat. 2020, 193, 352–358. https://doi.org/10.5004/dwt.2020.25802.Search in Google Scholar

6. Deng, Y.; Guan, X. Unlocking the Potential of Ferrate(VI) in Water Treatment: Toward One-step Multifunctional Solutions. J. Hazard. Mater. 2024, 464, 132920. https://doi.org/10.1016/j.jhazmat.2023.132920.Search in Google Scholar PubMed

7. Feihu, Z.; Yi, S. S. Electrochemical Synthesis of Ferrate (VI): Factors Influencing Synthesis and Current Research Trends. J. Adv. Res. Appl. Mech. 2024, 117, 72–90. https://doi.org/10.37934/aram.117.1.7290.Search in Google Scholar

8. Quino-Favero, J.; Espinoza, A. G.; Saettone, E.; Llanos, J. C. Y.; Larroca, F. P. The Effect of Temperature on the Rate of Oxygen Evolution Reaction during the Ferrate(VI) Synthesis by Anodic Dissolution of Iron in Highly Alkaline Media. Heliyon 2024, 10, 15. https://doi.org/10.1016/j.heliyon.2024.e35414.Search in Google Scholar PubMed PubMed Central

9. Gunawan, G.; Prasetya, N. B. A.; Wijaya, R. A. Electrosynthesis of Ferrate from Iron Waste and Seawater Salts as Antibacterials for Water Pollutant Treatment. Chem. Eng. Journ. 2024, 498, 155422. https://doi.org/10.1016/j.cej.2024.155422.Search in Google Scholar

10. Mácová, Z.; Bouzek, K. The Influence of Electrolyte Composition on Electrochemical Ferrate(VI) Synthesis. Part III: Anodic Dissolution Kinetics of a White Cast Iron Anode Rich in Iron Carbide. J. Appl. Electrochem. 2012, 42, 615–626. https://doi.org/10.1007/s10800-012-0438-9.Search in Google Scholar

11. Bouzek, K.; Roušar, I.; Taylor, M. A. Influence of Anode Material on Current Yield during Ferrate(vi) Production by Anodic Iron Dissolution Part II: Current Efficiency during Anodic Dissolution of White Cast Iron to Ferrate(vi) in Concentrated Alkali Hydroxide Solutions. J. Appl. Electrochem. 1996, 26, 925–931. https://doi.org/10.1007/BF00242044.Search in Google Scholar

12. Nickell, R. A.; Zhu, W. H.; Payne, R. U.; Cahela, D. R.; Tatarchuk, B. J. Hg/HgO Electrode and Hydrogen Evolution Potentials in Aqueous Sodium Hydroxide. J. Power Sources 2006, 161, 1217–1224. https://doi.org/10.1016/j.jpowsour.2006.05.028.Search in Google Scholar

13. Vesztergom, S.; Ujvári, M.; Láng, G. G. RRDE Experiments with Potential Scans at the Ring and Disk Electrodes. Electrochem. Commun. 2011, 13, 378–381. https://doi.org/10.1016/j.elecom.2011.01.032.Search in Google Scholar

14. Vesztergom, S.; Ujvári, M.; Láng, G. G. RRDE Experiments with Independent Potential Scans at the Ring and Disk Electrodes – 3D Map of Intermediates and Products of Electrode Processes. Electrochem. Commun. 2012, 19, 1–4. https://doi.org/10.1016/j.elecom.2012.03.006.Search in Google Scholar

15. Vesztergom, S.; Kovács, N.; Ujvári, M.; Láng, G. G. Apparatus and Methods for Using a Rotating Ring–Disk Electrode with Potentiodynamic Control of Both Working Electrodes. TM. Techn. Mess. 2017, 84, 683–697. https://doi.org/10.1515/teme-2016-0083.Search in Google Scholar

16. Láng, G. G.; Ujvári, M.; Kovács, N.; Vesztergom, S. The Theory and Applications of Dual Dynamic Voltammetry with Rotating Ring Disk Electrodes. ChemElectroChem 2025, 12, e202400661. https://doi.org/10.1002/celc.202400661.Search in Google Scholar

17. Frumkin, A. N.; Nekrasov, L. N.; Levich, V. G.; Ivanov, Y. B. Die Anwendung der rotierenden Scheibenelektrode mit einem Ringe zur Untersuchung von Zwischenprodukten elektrochemischer Reaktionen. J. Electroanal. Chem. 1959, 1, 84–90. https://doi.org/10.1016/0022-0728(59)80012-7.Search in Google Scholar

18. Albery, W. J.; Hitchman, M. L. Ring-disk Electrodes; Clarendon Press: Oxford, 1971.Search in Google Scholar

19. Láng, G. G.; Varga, J.; Záray, G.; Varga, I. P. Equipment and Procedure for the Preparation of Sodium and Potassium Ferrate Solutions by Electrochemical method/Berendezés És Eljárás Nátrium- És Kálium-Ferrát Oldatok Elektrokémiai Módszerrel Történő Előállítására. Hungarian patent, Reg. number 231043, Szabadalmi Közlöny és Védjegyértesítő 2020, 125, P19.Search in Google Scholar

20. Láng, G. G.; Varga, J.; Lendvai, J. Electrochemical Cluster System for the Production of Ferrate/Elektrokémiai Klaszter Rendszer Ferrát Előállítására, Hungarian patent, Patent number 0005559, Szabadalmi Közlöny és Védjegyértesítő 2023, 128, U26–U27.Search in Google Scholar

21. Láng, G. G.; Varga, J.; Záray, G.; Varga, I. P. Polypropylene or Polyethylene Based Separator for Use in Electrochemical Cells for Producing Alkali Metal Ferrates. EP Patent 3,983,577B1 2020. https://patents.google.com/patent/EP3983577B1/en.Search in Google Scholar

22. Carrington, A.; Schonland, D.; Symons, M. C. R. Structure and Reactivity of the Oxyanions of Transition metals_Part IV_Some Relations between Electronic Spectra and Structure. J. Chem. Soc. 1957, 659–665. https://doi.org/10.1039/JR9570000659.Search in Google Scholar

23. Bielski, B. H. J.; Thomas, M. J. Studies of Hypervalent Iron in Aqueous Solutions. I. Radiation-Induced Reduction of Iron(V1) to Iron(V) by CO2–. J. Am. Chem. Soc. 1987, 109, 7761–7764. https://doi.org/10.1021/ja00259a026.Search in Google Scholar

24. Zsubrits, Á.; Kuti, M.; Fekete, É.; Ujvári, M.; Láng, G. G. Where Do Ferrate Ions Form? A Dual Dynamic Voltammetry Study. Electrochem. Comm. 2023, 156, 107587. https://doi.org/10.1016/j.elecom.2023.107587.Search in Google Scholar

25. Bouzek, K.; Roušar, I.; Taylor, M. A. Influence of Anode Material on Current Yield during Ferrate(VI) Production by Anodic Iron Dissolution Part II: Current Efficiency during Anodic Dissolution of White Cast Iron to Ferrate(VI) in Concentrated Alkali Hydroxide Solutions. J. App. Electrochem. 1996, 26, 925–931. https://doi.org/10.1007/BF00242044.Search in Google Scholar

26. Bouzek, K.; Rousar, I.; Ar, Ï. Influence of Anode Material on Current Yield during Ferrate(VI) Production by Anodic Iron Dissolution Part III: Current Efficiency during Anodic Dissolution of Pure Iron to Ferrate(VI) in Concentrated Alkali Hydroxide Solutions. J. App. Electrochem. 1997, 27, 678–684. https://doi.org/10.1023/A:1018483603666.10.1023/A:1018483603666Search in Google Scholar

Received: 2024-10-24
Accepted: 2025-06-28
Published Online: 2025-07-11
Published in Print: 2025-09-25

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2024-1017/pdf
Scroll to top button