Abstract
First principle density functional theory methods, local density and Perdew-Burke-Ernzerhof generalized gradient approximations with Goedecker pseudopotential (LDA-G & PBE-G), are used to study the electric field effects on the binding energy and atomic charges of bilayer graphene (BLG) at the Γ point of the Brillouin zone based on two types of unit cells (α and β) containing nC=8–32 carbon atoms. Results show that application of electric fields of 4–24 V/nm strengths reduces the binding energies and induces charge transfer between the two layers. The transferred charge increases almost linearly with the strength of the electric field for all sizes of the two types of unit cells. Furthermore, the charge transfer calculated with the α-type unit cells is more sensitive to the electric field strength. The calculated field-dependent contour plots of the differential charge densities of the two layers show details of charge density redistribution under the influence of the electric field.
Acknowledgments
We sincerely thank Dr. S. Jalali, of our Physics department for fruitful general discussion at the beginning of this work. N.S. also thanks MSTR and Iranian nanotechnology initiative council for financial supports.
References
[1] P. J. Wessely and U. Schwalke, Appl. Surf. Sci. 291, 83 (2014).10.1016/j.apsusc.2013.09.142Search in Google Scholar
[2] P. J. Wessely and U. Schwalke, 9th International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS) (2014).Search in Google Scholar
[3] G. Fiori and G. Iannaccone, IEEE 30, 261 (2009).10.1109/LED.2008.2010629Search in Google Scholar
[4] G. Iannaccone, G. Fiori, M. Macucci, P. Michetti, M. Cheli, et al., Proceedings of IEEE International Electron Devices Meeting (IEDM), 245 (2009).Search in Google Scholar
[5] E. McCann and M. Koshino, Rep. Prog. Phys. 76, 056503 (2013).10.1088/0034-4885/76/5/056503Search in Google Scholar PubMed
[6] J. Ruseckas and G. Juzeliunas, Phys. Rev. B 83, 035403 (2011).10.1103/PhysRevB.83.035403Search in Google Scholar
[7] J. Yan, E. A. Henriksen, P. Kim, and A. Pinczuk, Phys. Rev. Lett. 101, 136804 (2008).10.1103/PhysRevLett.101.136804Search in Google Scholar PubMed
[8] B. Sahu, H. Min, A. H. MacDonald, and S. K. Banerjee, Phys. Rev. B 78, 045404 (2008).10.1103/PhysRevB.78.045404Search in Google Scholar
[9] W. Tao, G. Qing, L. Yan, and S. Kuang, Chin. Phys. B 21, 067301 (2012).10.1088/1674-1056/21/6/067301Search in Google Scholar
[10] M. Aoki and H. Amawashi, Solid State Commun. 142, 123(2007).10.1016/j.ssc.2007.02.013Search in Google Scholar
[11] E. J. G. Santos and H. Kaxiras, Nano Lett. 13, 898 (2013).10.1021/nl303611vSearch in Google Scholar PubMed
[12] J. Nilsson, A. H. Castro Neto, F. Guinea, and N. M. R. Peres, Phys. Rev. B 76, 165416 (2007).10.1103/PhysRevB.76.165416Search in Google Scholar
[13] H. Min, B. Sahu, S. K. Banerjee, and A. H. MacDonald, Phys. Rev. B 75, 155115 (2007).10.1103/PhysRevB.75.155115Search in Google Scholar
[14] A. Z. AlZahrani and G. P. Srivastava, Braz. J. Phys. 39, 694 (2009).10.1590/S0103-97332009000600013Search in Google Scholar
[15] G. Kondayya and A. Shukla, Physica B 406, 3538 (2011).10.1016/j.physb.2011.06.008Search in Google Scholar
[16] H. Sabzyan and N. Sadeghpour, Z. Naturforsch. 71, 315 (2016).10.1515/zna-2015-0444Search in Google Scholar
[17] Car-Parrinello Molecular Dynamic (CPMD), http://www. cpmd.org.Search in Google Scholar
[18] S. Goedecker, M. Teter, and J. Hutter, Phys. Rev. B 54, 1703 (1996).10.1103/PhysRevB.54.1703Search in Google Scholar PubMed
[19] O. Dubay and G. Kresse, Phys. Rev. B 67, 035401 (2003).10.1103/PhysRevB.67.035401Search in Google Scholar
[20] T. O. Wehling, A. I. Lichtenstein, and M. I. Katsnelson, Appl. Phys. Lett. 93, 202110 (2008).10.1063/1.3033202Search in Google Scholar
[21] G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. Brink, et al., Phys. Rev. Lett. 101, 026803 (2008).10.1103/PhysRevLett.101.026803Search in Google Scholar PubMed
[22] M. W. Chase, J. Phys. Chem. Ref. Data, Monograph 9, 1 (1998).Search in Google Scholar
[23] H. Shin, S. Kang, J. Koo, H. Lee, J. Kim, et al., J. Chem. Phys. 140, 114702 (2014).10.1063/1.4867544Search in Google Scholar PubMed
[24] B. I. Dunlap and J. C. Boettger, J. Phys. B: At. Mol. Opt. Phys. 29, 4907 (1996).10.1088/0953-4075/29/21/004Search in Google Scholar
[25] L. Li, S. Reich, and J. Robertson, Phys. Rev. B 72, 184109 (2005).10.1103/PhysRevB.72.184109Search in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- First Principle DFT Study of Electric Field Effects on the Characteristics of Bilayer Graphene
- Darboux Transformation for Coupled Non-Linear Schrödinger Equation and Its Breather Solutions
- Molecular Interactions in Particular Van der Waals Nanoclusters
- Neimark-Sacker Bifurcation and Chaotic Behaviour of a Modified Host–Parasitoid Model
- First-Principles Investigations on Structural, Elastic, Dynamical, and Thermal Properties of Earth-Abundant Nitride Semiconductor CaZn2N2 under Pressure
- Quantum-Phase-Field Concept of Matter: Emergent Gravity in the Dynamic Universe
- Free and Forced Vibrations of the Strongly Nonlinear Cubic-Quintic Duffing Oscillators
- Electronic Polarisability of NaNO2–NaNO3 and NaOH–NaNO3 Ionic Melts and Effective Ionic Radius of OH-
- Upon Generating Discrete Expanding Integrable Models of the Toda Lattice Systems and Infinite Conservation Laws
- Preparation, Structural, Optical, Electrical, and Magnetic Characterisation of Orthorhombic GdCr0.3Mn0.7O3 Multiferroic Nanoparticles
Articles in the same Issue
- Frontmatter
- First Principle DFT Study of Electric Field Effects on the Characteristics of Bilayer Graphene
- Darboux Transformation for Coupled Non-Linear Schrödinger Equation and Its Breather Solutions
- Molecular Interactions in Particular Van der Waals Nanoclusters
- Neimark-Sacker Bifurcation and Chaotic Behaviour of a Modified Host–Parasitoid Model
- First-Principles Investigations on Structural, Elastic, Dynamical, and Thermal Properties of Earth-Abundant Nitride Semiconductor CaZn2N2 under Pressure
- Quantum-Phase-Field Concept of Matter: Emergent Gravity in the Dynamic Universe
- Free and Forced Vibrations of the Strongly Nonlinear Cubic-Quintic Duffing Oscillators
- Electronic Polarisability of NaNO2–NaNO3 and NaOH–NaNO3 Ionic Melts and Effective Ionic Radius of OH-
- Upon Generating Discrete Expanding Integrable Models of the Toda Lattice Systems and Infinite Conservation Laws
- Preparation, Structural, Optical, Electrical, and Magnetic Characterisation of Orthorhombic GdCr0.3Mn0.7O3 Multiferroic Nanoparticles