Abstract
In early- or late-onset Alzheimer’s disease (AD), inflammation, which is triggered by pathologic conditions, influences the progression of neurodegeneration. Brain-derived neurotrophic factor (BDNF) has emerged as a crucial mediator of neurogenesis, because it exhibits a remarkable activity-dependent regulation of expression, which suggests that it may link inflammation to neurogenesis. Emerging evidence suggests that acute and chronic inflammation in AD differentially modulates neurotrophin functions, which are related to the roles of inflammation in neuroprotection and neurodegeneration. Recent studies also indicate novel mechanisms of BDNF-mediated neuroprotection, including the modulation of autophagy. Numerous research studies have demonstrated reverse parallel alterations between proinflammatory cytokines and BDNF during neurodegeneration; thus, we hypothesize that one mechanism that underlies the negative impact of chronic inflammation on neurogenesis is the reduction of BDNF production and function by proinflammatory cytokines.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 81371223
Award Identifier / Grant number: 81371437
Award Identifier / Grant number: 81571061
Funding statement: The work was supported by the National Natural Science Foundation of China (81371223, 81371437 and 81571061) and Liaoning Province Innovation and Entrepreneurship Training Program (201510161000035, 201610161000011, and 201610161000009).
Acknowledgments
The work was supported by the National Natural Science Foundation of China (81371223, 81371437 and 81571061) and Liaoning Province Innovation and Entrepreneurship Training Program (201510161000035, 201610161000011, and 201610161000009).
References
Belarbi, K., Arellano, C., Ferguson, R., Jopson, T., and Rosi, S. (2012). Chronic neuroinflammation impacts the recruitment of adult-born neurons into behaviorally relevant hippocampal networks. Brain. Behav. Immun. 26, 18–23.10.1016/j.bbi.2011.07.225Search in Google Scholar PubMed PubMed Central
Ben Menachem-Zidon, O., Goshen, I., Kreisel, T., Ben Menahem, Y., Reinhartz, E., Ben Hur, T., and Yirmiya, R. (2008). Intrahippocampal transplantation of transgenic neural precursor cells overexpressing interleukin-1 receptor antagonist blocks chronic isolation-induced impairment in memory and neurogenesis. Neuropsychopharmacology 33, 2251–2262.10.1038/sj.npp.1301606Search in Google Scholar PubMed
Bennett, D.A., Yu, L., Yang, J., Srivastava, G.P., Aubin, C., and De Jager, P.L. (2015). Epigenomics of Alzheimer’s disease. Transl. Res. 165, 200–220.10.1016/B978-0-12-800802-7.00009-5Search in Google Scholar
Bernardino, L., Agasse, F., Silva, B., Ferreira, R., Grade, S., and Malva, J.O. (2008). Tumor necrosis factor-alpha modulates survival, proliferation, and neuronal differentiation in neonatal subventricular zone cell cultures. Stem Cells (Dayton, Ohio) 26, 2361–2371.10.1634/stemcells.2007-0914Search in Google Scholar PubMed
Blurton-Jones, M., Kitazawa, M., Martinez-Coria, H., Castello, N.A., Muller, F.J., Loring, J.F., Yamasaki, T.R., Poon, W.W., Green, K.N., and LaFerla, F. M. (2009). Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc. Natl. Acad. Sci. USA. 106, 13594–13599.10.1073/pnas.0901402106Search in Google Scholar PubMed PubMed Central
Botterill, J.J., Brymer, K.J., Caruncho, H.J., and Kalynchuk, L.E. (2015). Aberrant hippocampal neurogenesis after limbic kindling: relationship to BDNF and hippocampal-dependent memory. Epilepsy Behav. 47, 83–92.10.1016/j.yebeh.2015.04.046Search in Google Scholar PubMed
Bovolenta, R., Zucchini, S., Paradiso, B., Rodi, D., Merigo, F., Navarro Mora, G., Osculati, F., Berto, E., Marconi, P., Marzola, A., et al. (2010). Hippocampal FGF-2 and BDNF overexpression attenuates epileptogenesis-associated neuroinflammation and reduces spontaneous recurrent seizures. J. Neuroinflammation 7, 81.10.1186/1742-2094-7-81Search in Google Scholar PubMed PubMed Central
Braak, H. and Del Tredici, K. (2015). The preclinical phase of the pathological process underlying sporadic Alzheimer’s disease. Brain 138, 2814–2833.10.1093/brain/awv236Search in Google Scholar PubMed
Butovsky, O., Ziv, Y., Schwartz, A., Landa, G., Talpalar, A.E., Pluchino, S., Martino G., and Schwartz, M. (2006). Microglia activated by IL-4 or IFN-γ differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol. Cell. Neurosci. 31, 149–160.10.1016/j.mcn.2005.10.006Search in Google Scholar PubMed
Caccamo, A., Magri, A., Medina, D.X., Wisely, E.V., Lopez-Aranda, M.F., Silva, A.J., and Oddo, S. (2013). mTOR regulates tau phosphorylation and degradation: implications for Alzheimer’s disease and other tauopathies. Aging Cell 12, 370–380.10.1111/acel.12057Search in Google Scholar PubMed PubMed Central
Calabrese, F., Rossetti, A.C., Racagni, G., Gass, P., Riva, M.A., and Molteni, R. (2014). Brain-derived neurotrophic factor: a bridge between inflammation and neuroplasticity. Front. Cell. Neurosci. 8, 430.10.3389/fncel.2014.00430Search in Google Scholar PubMed PubMed Central
Campos, A.C., Vaz, G.N., Saito, V.M., and Teixeira, A.L. (2014). Further evidence for the role of interferon-gamma on anxiety- and depressive-like behaviors: involvement of hippocampal neurogenesis and NGF production. Neurosci. Lett. 578, 100–105.10.1016/j.neulet.2014.06.039Search in Google Scholar PubMed
Canossa, M., Giordano, E., Cappello, S., Guarnieri, C., and Ferri, S. (2002). Nitric oxide down-regulates brain-derived neurotrophic factor secretion in cultured hippocampal neurons. Proc. Natl. Acad. Sci. USA. 99, 3282–3287.10.1073/pnas.042504299Search in Google Scholar PubMed PubMed Central
Capilla-Gonzalez, V., Lavell, E., Quinones-Hinojosa, A., and Guerrero-Cazares, H. (2015). Regulation of subventricular zone-derived cells migration in the adult brain. Adv. Exp. Med. Biol. 853, 1–21.10.1007/978-3-319-16537-0_1Search in Google Scholar PubMed
Carpentier, P.A., Dingman, A.L., and Palmer, T.D. (2011). Placental TNF-α signaling in illness-induced complications of pregnancy. Am. J. Pathol. 178, 2802–2810.10.1016/j.ajpath.2011.02.042Search in Google Scholar PubMed PubMed Central
Caruso, C., Carniglia, L., Durand, D., Gonzalez, P.V., Scimonelli, T.N., and Lasaga, M. (2012). Melanocortin 4 receptor activation induces brain-derived neurotrophic factor expression in rat astrocytes through cyclic AMP-protein kinase A pathway. Mol. Cell. Endocrinol. 348, 47–54.10.1016/j.mce.2011.07.036Search in Google Scholar PubMed
Chen, S., Brunskill, E.W., Potter, S.S., Dexheimer, P.J., Salomonis, N., Aronow, B.J., Hong, C.I., Zhang, T., and Kopan, R. (2015). Intrinsic age-dependent changes and cell-cell contacts regulate nephron progenitor lifespan. Dev. Cell. 35, 49–62.10.1016/j.devcel.2015.09.009Search in Google Scholar PubMed PubMed Central
Cheong, C.U., Chang, C.P., Chao, C.M., Cheng, B.C., Yang, C.Z., and Chio, C.C. (2013). Etanercept attenuates traumatic brain injury in rats by reducing brain TNF-α contents and by stimulating newly formed neurogenesis. Mediators. Inflamm. 2013, 620837.10.1155/2013/620837Search in Google Scholar PubMed PubMed Central
Chimienti, G., Mezzapesa, A., Rotelli, M.T., Lupo, L., and Pepe, G. (2012). Plasma concentrations but not serum concentrations of brain-derived neurotrophic factor are related to pro-inflammatory cytokines in patients undergoing major abdominal surgery. Clin. Biochem. 45, 631–636.10.1016/j.clinbiochem.2012.02.025Search in Google Scholar PubMed
Choe, Y., Huynh, T., and Pleasure, S.J. (2014). Migration of oligodendrocyte progenitor cells is controlled by transforming growth factor β family proteins during corticogenesis. J. Neurosci. 34, 14973–14983.10.1523/JNEUROSCI.1156-14.2014Search in Google Scholar PubMed PubMed Central
Daynac, M., Pineda, J.R., Chicheportiche, A., Gauthier, L.R., Morizur, L., Boussin, F.D., and Mouthon, M.A. (2014). TGFβ lengthens the G1 phase of stem cells in aged mouse brain. Stem Cells 32, 3257–3265.10.1002/stem.1815Search in Google Scholar PubMed
de Araujo-Martins, L., de Oliveira, R.M., dos Santos, G.V., dos Santos, R.C., dos Santos, A.A., and Giestal de Araujo, E. (2013). Treatment in vitro of retinal cells with IL-4 increases the survival of retinal ganglion cells: the involvement of BDNF. Neurochem. Res. 38, 162–173.10.1007/s11064-012-0904-0Search in Google Scholar PubMed
de Sa Lima, L., Kawamoto, E.M., Munhoz, C.D., Kinoshita, P.F., Orellana, A.M., Curi, R., Rossoni, L.V., Avellar, M.C., and Scavone, C. (2013). Ouabain activates NFkappaB through an NMDA signaling pathway in cultured cerebellar cells. Neuropharmacology 73, 327–336.10.1016/j.neuropharm.2013.06.006Search in Google Scholar PubMed
Dellarole, A., Morton, P., Brambilla, R., Walters, W., Summers, S., Bernardes, D., Grilli, M., and Bethea, J.R. (2014). Neuropathic pain-induced depressive-like behavior and hippocampal neurogenesis and plasticity are dependent on TNFR1 signaling. Brain. Behav. Immun. 41, 65–81.10.1016/j.bbi.2014.04.003Search in Google Scholar PubMed PubMed Central
Deng, J., Habib, A., Obregon, D.F., Barger, S.W., Giunta, B., Wang, Y.J., Hou, H., Sawmiller, D., and Tan, J. (2015). Soluble amyloid precursor protein alpha inhibits tau phosphorylation through modulation of GSK3beta signaling pathway. J. Neurochem. 135, 630–637.10.1111/jnc.13351Search in Google Scholar PubMed PubMed Central
Derecki, N.C., Cardani, A.N., Yang, C.H., Quinnies, K.M., Crihfield, A., Lynch, K.R., and Kipnis, J. (2010). Regulation of learning and memory by meningeal immunity: a key role for IL-4. J. Exp. Med. 207, 1067–1080.10.1084/jem.20091419Search in Google Scholar PubMed PubMed Central
Diniz, B.S. and Teixeira, A.L. (2011). Brain-derived neurotrophic factor and Alzheimer’s disease: physiopathology and beyond. Neuromolecular Med. 13, 217–222.10.1007/s12017-011-8154-xSearch in Google Scholar PubMed
Diniz, B.S., Teixeira, A.L., Ojopi, E.B., Talib, L.L., Mendonca, V.A., Gattaz, W.F., and Forlenza, O.V. (2010). Higher serum sTNFR1 level predicts conversion from mild cognitive impairment to Alzheimer’s disease. J. Alzheimer’s Dis. 22, 1305–1311.10.3233/JAD-2010-100921Search in Google Scholar PubMed
Dursun, E., Gezen-Ak, D., Hanagasi, H., Bilgic, B., Lohmann, E., Ertan, S., Atasoy, I.L., Alaylioglu, M., Araz, O.S., Onal, B., et al. (2015). The interleukin 1 alpha, interleukin 1 beta, interleukin 6 and alpha-2-macroglobulin serum levels in patients with early or late onset Alzheimer’s disease, mild cognitive impairment or Parkinson’s disease. J. Neuroimmunol. 283, 50–57.10.1016/j.jneuroim.2015.04.014Search in Google Scholar PubMed
Eikelenboom, P., van Exel, E., Hoozemans, J.J., Veerhuis, R., Rozemuller, A.J., and van Gool, W.A. (2010). Neuroinflammation-an early event in both the history and pathogenesis of Alzheimer’s disease. Neurodegener. Dis. 7, 38–41.10.1159/000283480Search in Google Scholar PubMed
Fitzsimons, C.P., van Bodegraven, E., Schouten, M., Lardenoije, R., Kompotis, K., Kenis, G., van den Hurk, M., Boks, M.P., Biojone, C., Joca, S., et al. (2014). Epigenetic regulation of adult neural stem cells: implications for Alzheimer’s disease. Mol. Neurodegener. 9, 25.10.1186/1750-1326-9-25Search in Google Scholar PubMed PubMed Central
Forlenza, O.V., Diniz, B.S., Teixeira, A.L., Ojopi, E.B., Talib, L.L., Mendonca, V.A., Izzo, G., and Gattaz, W.F. (2010). Effect of brain-derived neurotrophic factor Val66Met polymorphism and serum levels on the progression of mild cognitive impairment. World J. Biol. Psychiatry. 11, 774–780.10.3109/15622971003797241Search in Google Scholar PubMed
Fujimura, M. and Usuki, F. (2015). Low concentrations of methylmercury inhibit neural progenitor cell proliferation associated with up-regulation of glycogen synthase kinase 3beta and subsequent degradation of cyclin E in rats. Toxicol. Appl. Pharmacol. 288, 19–25.10.1016/j.taap.2015.07.006Search in Google Scholar PubMed
Fuster-Matanzo, A., Llorens-Martin, M., Hernandez, F., and Avila, J. (2013). Role of neuroinflammation in adult neurogenesis and Alzheimer disease: therapeutic approaches. Mediators. Inflamm. 2013, 260925.10.1155/2013/260925Search in Google Scholar PubMed PubMed Central
Gadani, S.P., Cronk, J.C., Norris, G.T., and Kipnis, J. (2012). IL-4 in the brain: a cytokine to remember. J. Immunol. (Baltimore, MD:1950), 189, 4213–4219.10.4049/jimmunol.1202246Search in Google Scholar PubMed PubMed Central
Gezen-Ak, D., Dursun, E., Hanagasi, H., Bilgic, B., Lohman, E., Araz, O.S., Atasoy, I.L., Alaylioglu, M., Onal, B., Gurvit, H., et al. (2013). BDNF, TNFalpha, HSP90, CFH, and IL-10 serum levels in patients with early or late onset Alzheimer’s disease or mild cognitive impairment. J. Alzheimer’s Dis. 37, 185–195.10.3233/JAD-130497Search in Google Scholar PubMed
Grabe, H.J., Schwahn, C., Mahler, J., Appel, K., Schulz, A., Spitzer, C., Fenske, K., Barnow, S., Freyberger, H.J., Teumer, A., et al. (2012). Genetic epistasis between the brain-derived neurotrophic factor Val66Met polymorphism and the 5-HTT promoter polymorphism moderates the susceptibility to depressive disorders after childhood abuse. Prog. Neuropsychopharmacol. Biol. Psychiatry. 36, 264–270.10.1016/j.pnpbp.2011.09.010Search in Google Scholar PubMed
Graciarena, M., Roca, V., Mathieu, P., Depino, A.M., and Pitossi, F.J. (2013). Differential vulnerability of adult neurogenesis by adult and prenatal inflammation: role of TGF-beta1. Brain. Behav. Immun. 34, 17–28.10.1016/j.bbi.2013.05.007Search in Google Scholar PubMed
Green, H.F. and Nolan, Y.M. (2012). Unlocking mechanisms in interleukin-1beta-induced changes in hippocampal neurogenesis – a role for GSK-3β and TLX. Transl. Psychiatry. 2, e194.10.1038/tp.2012.117Search in Google Scholar PubMed PubMed Central
Green, H.F., Treacy, E., Keohane, A.K., Sullivan, A.M., O’Keeffe, G.W., and Nolan, Y.M. (2012). A role for interleukin-1beta in determining the lineage fate of embryonic rat hippocampal neural precursor cells. Mol. Cell. Neurosci. 49, 311–321.10.1016/j.mcn.2012.01.001Search in Google Scholar PubMed
Guadagno, J., Swan, P., Shaikh, R., and Cregan, S.P. (2015). Microglia-derived IL-1beta triggers p53-mediated cell cycle arrest and apoptosis in neural precursor cells. Cell Death Dis. 6, e1779.10.1038/cddis.2015.151Search in Google Scholar PubMed PubMed Central
He, Y., Zhang, H., Yung, A., Villeda, S.A., and Jaeger, P.A. (2014). ALK5-dependent TGF-beta signaling is a major determinant of late-stage adult neurogenesis. Nat. Neurosci. 17, 943–952.10.1038/nn.3732Search in Google Scholar PubMed PubMed Central
Hjorth, E., Zhu, M., Toro, V.C., Vedin, I., Palmblad, J., Cederholm, T., Freund-Levi, Y., Faxen-Irving, G., Wahlund, L.O., Basun, H., et al. (2013). Omega-3 fatty acids enhance phagocytosis of Alzheimer’s disease-related amyloid-beta42 by human microglia and decrease inflammatory markers. J. Alzheimer’s Dis. 35, 697–713.10.3233/JAD-130131Search in Google Scholar PubMed
Ho, G.J., Drego, R., Hakimian, E., and Masliah, E. (2005). Mechanisms of cell signaling and inflammation in Alzheimer’s disease. Curr. Drug Targets Inflamm. Allergy 4, 247–256.10.2174/1568010053586237Search in Google Scholar PubMed
Ho, N., Brookshire, B.R., Clark, J.E., and Lucki, I. (2015). Indomethacin reverses decreased hippocampal cell proliferation in streptozotocin-induced diabetic mice. Metab. Brain Dis. 30, 555–562.10.1007/s11011-014-9611-7Search in Google Scholar PubMed PubMed Central
Hritcu, L. and Gorgan, L.D. (2014). Intranigral lipopolysaccharide induced anxiety and depression by altered BDNF mRNA expression in rat hippocampus. Prog. Neuropsychopharmacol. Biol. Psychiatry. 51, 126–132.10.1016/j.pnpbp.2014.01.016Search in Google Scholar PubMed
Hsiao, Y.H., Hung, H.C., Chen, S.H., and Gean, P.W. (2014). Social interaction rescues memory deficit in an animal model of Alzheimer’s disease by increasing BDNF-dependent hippocampal neurogenesis. J. Neurosci. 34, 16207–16219.10.1523/JNEUROSCI.0747-14.2014Search in Google Scholar PubMed PubMed Central
Huang, E.J. and Reichardt, L.F. (2003). Trk receptors: roles in neuronal signal transduction. Annu. Rev. Biochem. 72, 609–642.10.1146/annurev.biochem.72.121801.161629Search in Google Scholar PubMed
Huang, T., Cui, J., Li, L., Hitchcock, P.F., and Li, Y. (2012). The role of microglia in the neurogenesis of zebrafish retina. Biochem. Biophys. Res. Commun. 421, 214–220.10.1016/j.bbrc.2012.03.139Search in Google Scholar PubMed PubMed Central
Huang, H., Ma, Z.C., Wang, Y.G., Hong, Q., Tan, H.L., Xiao, C.R., Liang, Q.D., Tang, X.L., and Gao, Y. (2015a). Ferulic acid alleviates Abeta25-35- and lipopolysaccharide-induced PC12 cellular damage: a potential role in Alzheimer’s disease by PDE inhibition. Int. J. Clin. Pharmacol. Ther. 53, 828–837.10.5414/CP202295Search in Google Scholar PubMed
Huang, Y.C., Yu, H.S., and Chai, C.Y. (2015b). Roles of oxidative stress and the ERK1/2, PTEN and p70S6K signaling pathways in arsenite-induced autophagy. Toxicol. Lett. 239, 172–181.10.1016/j.toxlet.2015.09.022Search in Google Scholar PubMed
Iosif, R.E., Ekdahl, C.T., Ahlenius, H., Pronk, C.J., Bonde, S., Kokaia, Z., Jacobsen, S.E., and Lindvall, O. (2006). Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis. J. Neurosci. 26, 9703–9712.10.1523/JNEUROSCI.2723-06.2006Search in Google Scholar PubMed PubMed Central
Islam, M.M. and Zhang, C.L. (2015). TLX: a master regulator for neural stem cell maintenance and neurogenesis. Biochim. Biophys. Acta 1849, 210–216.10.1016/j.bbagrm.2014.06.001Search in Google Scholar PubMed PubMed Central
Janssen, W.J., Geluk, H.C., and Boes, M. (2016). F-actin remodeling defects as revealed in primary immunodeficiency disorders. Clin. Immunol. (Orlando, FL) 164:34–42.10.1016/j.clim.2016.01.009Search in Google Scholar PubMed
Kandasamy, M., Lehner, B., Kraus, S., Sander, P.R., Marschallinger, J., Rivera, F.J., Trümbach, D., Ueberham, U., Reitsamer, H.A., Strauss, O., Bogdahn, U., Couillard-Despres, S., Aigner, L. (2014). TGF-beta signalling in the adult neurogenic niche promotes stem cell quiescence as well as generation of new neurons. J Cell Mol Med. 18, 1444–1459.10.1111/jcmm.12298Search in Google Scholar PubMed PubMed Central
Keohane, A., Ryan, S., Maloney, E., Sullivan, A.M., and Nolan, Y.M. (2010). Tumour necrosis factor-alpha impairs neuronal differentiation but not proliferation of hippocampal neural precursor cells: role of Hes1. Mol. Cell. Neurosci. 43, 127–135.10.1016/j.mcn.2009.10.003Search in Google Scholar PubMed
Kim, H.J., Kim, W., and Kong, S.Y. (2013). Antidepressants for neuro-regeneration: from depression to Alzheimer’s disease. Arch. Pharm. Res. 36, 1279–1290.10.1007/s12272-013-0238-8Search in Google Scholar PubMed
Kim, J.A., Ha, S., Shin, K.Y., Kim, S., Lee, K.J., Chong, Y.H., Chang, K.A., and Suh, Y.H. (2015). Neural stem cell transplantation at critical period improves learning and memory through restoring synaptic impairment in Alzheimer’s disease mouse model. Cell Death Dis. 6, e1789.10.1038/cddis.2015.138Search in Google Scholar PubMed PubMed Central
Kiyota, T., Okuyama, S., Swan, R.J., Jacobsen, M.T., Gendelman, H.E., and Ikezu, T. (2010). CNS expression of anti-inflammatory cytokine interleukin-4 attenuates Alzheimer’s disease-like pathogenesis in APP+PS1 bigenic mice. FASEB J. 24, 3093–3102.10.1096/fj.10-155317Search in Google Scholar PubMed PubMed Central
Kiyota, T., Ingraham, K.L., Swan, R.J., Jacobsen, M.T., Andrews, S.J., and Ikezu, T. (2012). AAV serotype 2/1-mediated gene delivery of anti-inflammatory interleukin-10 enhances neurogenesis and cognitive function in APP+PS1 mice. Gene Ther. 19, 724–733.10.1038/gt.2011.126Search in Google Scholar PubMed PubMed Central
Klincumhom, N., Tharasanit, T., Thongkittidilok, C., Tiptanavattana, N., Rungarunlert, S., Dinnyes, A., and Techakumphu, M. (2014). Selective TGF-β1/ALK inhibitor improves neuronal differentiation of mouse embryonic stem cells. J. Neurosci. 578, 1–6.10.1016/j.neulet.2014.06.001Search in Google Scholar PubMed
Komuro, Y., Xu, G., Bhaskar, K., and Lamb, B.T. (2015). Human tau expression reduces adult neurogenesis in a mouse model of tauopathy. Neurobiol. Aging 36, 2034–2042.10.1016/j.neurobiolaging.2015.03.002Search in Google Scholar PubMed PubMed Central
Koo, J.W. and Duman, R.S. (2009). Evidence for IL-1 receptor blockade as a therapeutic strategy for the treatment of depression. Curr. Opin. Investig. Drugs (London, England:2000), 10, 664–671.Search in Google Scholar
Koo, J.W., Russo, S.J., Ferguson, D., Nestler, E.J., and Duman, R.S. (2010). Nuclear factor-kappaB is a critical mediator of stress-impaired neurogenesis and depressive behavior. Proc. Natl. Acad. Sci. USA. 107, 2669–2674.10.1073/pnas.0910658107Search in Google Scholar PubMed PubMed Central
Krieglstein, K., Zheng, F., Unsicker, K., and Alzheimer, C. (2011). More than being protective: functional roles for TGF-beta/activin signaling pathways at central synapses. Trends Neurosci. 34, 421–429.10.1016/j.tins.2011.06.002Search in Google Scholar PubMed
Kurowska, E. and Majkutewicz, I. (2015). [The interleukin-10 in the central nervous system]. Postepy Hig. Med. Dosw. (Online), 69, 886–891.10.5604/17322693.1162990Search in Google Scholar PubMed
Kuzumaki, N., Ikegami, D., Imai, S., Narita, M., Tamura, R., Yajima, M., Suzuki, A., Miyashita, K., Niikura, K., Takeshima, H, et al. (2010). Enhanced IL-1beta production in response to the activation of hippocampal glial cells impairs neurogenesis in aged mice. Synapse (New York, NY), 64, 721–728.10.1002/syn.20800Search in Google Scholar
Ladt, K., Ganguly, A., and Roy, S. (2016). Axonal actin in action: imaging actin dynamics in neurons. Methods Cell. Biol. 131, 91–106.10.1016/bs.mcb.2015.07.003Search in Google Scholar PubMed PubMed Central
Le Thuc, O., Blondeau, N., Nahon, J.L., and Rovere, C. (2015). The complex contribution of chemokines to neuroinflammation: switching from beneficial to detrimental effects. Ann. N.Y. Acad. Sci. 1351, 127–140.10.1111/nyas.12855Search in Google Scholar PubMed
Lee, S.T., Chu, K., Jung, K.H., Kim, J.H., Huh, J.Y., Yoon, H., Park, D.K., Lim, J.Y., Kim, J.M., Jeon, D., et al. (2012). miR-206 regulates brain-derived neurotrophic factor in Alzheimer disease model. Ann. Neurol. 72, 269–277.10.1002/ana.23588Search in Google Scholar PubMed
Lees, J.R., Golumbek, P.T., Sim, J., Dorsey, D., and Russell, J.H. (2008). Regional CNS responses to IFN-gamma determine lesion localization patterns during EAE pathogenesis. J. Exp. Med. 205, 2633–2642.10.1084/jem.20080155Search in Google Scholar PubMed PubMed Central
Li, L., Zhang, S., Zhang, X., Li, T., Tang, Y., Liu, H., Yang, W., and Le, W. (2013). Autophagy enhancer carbamazepine alleviates memory deficits and cerebral amyloid-beta pathology in a mouse model of Alzheimer’s disease. Curr. Alzheimer Res. 10, 433–441.10.2174/1567205011310040008Search in Google Scholar PubMed
Li, T., Liu, H., Xue, H., Zhang, J., Han, X., Yan, S., Bo, S., Liu, S., Yuan, L., Deng, L., et al. (2016). Neuroprotective effects of hydrogen sulfide against early brain injury and secondary cognitive deficits following subarachnoid hemorrhage. Brain Pathol. (Zurich, Switzerland).10.1111/bpa.12361Search in Google Scholar
Liang, C., Tan, S., Huang, Q., Lin, J., Lu, Z., and Lin, X. (2015). Pratensein ameliorates beta-amyloid-induced cognitive impairment in rats via reducing oxidative damage and restoring synapse and BDNF levels. Neurosci. Lett. 592, 48–53.10.1016/j.neulet.2015.03.003Search in Google Scholar
Liesz, A., Suri-Payer, E., Veltkamp, C., Doerr, H., Sommer, C., Rivest, S., Giese, T., and Veltkamp, R. (2009). Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat. Med. 15, 192–199.10.1038/nm.1927Search in Google Scholar
Liu, X.Y., Gonzalez-Toledo, M.E., Fagan, A., Duan, W.M., Liu, Y., Zhang, S., Li, B., Piao, C.S., Nelson, L., and Zhao, L. R. (2015). Stem cell factor and granulocyte colony-stimulating factor exhibit therapeutic effects in a mouse model of CADASIL. Neurobiol. Dis. 73, 189–203.10.1016/j.nbd.2014.09.006Search in Google Scholar
Llorens-Martin, M., Jurado-Arjona, J., Fuster-Matanzo, A., Hernandez, F., Rabano, A., and Avila, J. (2014). Peripherally triggered and GSK-3β-driven brain inflammation differentially skew adult hippocampal neurogenesis, behavioral pattern separation and microglial activation in response to ibuprofen. Transl. Psychiatry 4, e463.10.1038/tp.2014.92Search in Google Scholar
Ma, D.K., Kim, W.R., Ming, G.L., and Song, H. (2009). Activity-dependent extrinsic regulation of adult olfactory bulb and hippocampal neurogenesis. Ann. N.Y. Acad. Sci. 1170, 664–673.10.1111/j.1749-6632.2009.04373.xSearch in Google Scholar
Ma, L., Jia, J., Liu, X., Bai, F., Wang, Q., and Xiong, L. (2015). Activation of murine microglial N9 cells is attenuated through cannabinoid receptor CB2 signaling. Biochem. Biophys. Res. Commun. 458, 92–97.10.1016/j.bbrc.2015.01.073Search in Google Scholar
Madrigal, J.L., Hurtado, O., Moro, M.A., Lizasoain, I., Lorenzo, P., Castrillo, A., Bosca, L., and Leza, J.C. (2002). The increase in TNF-alpha levels is implicated in NF-kappaB activation and inducible nitric oxide synthase expression in brain cortex after immobilization stress. Neuropsychopharmacology 26, 155–163.10.1016/S0893-133X(01)00292-5Search in Google Scholar
Martin-Moreno, A.M., Reigada, D., Ramirez, B.G., Mechoulam, R., Innamorato, N., Cuadrado, A., and de Ceballos, M.L. (2011). Cannabidiol and other cannabinoids reduce microglial activation in vitro and in vivo: relevance to Alzheimer’s disease. Mol. Pharmacol. 79, 964–973.10.1124/mol.111.071290Search in Google Scholar PubMed PubMed Central
McCoy, M.K. and Tansey, M.G. (2008). TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J. Neuroinflammation 5, 45.10.1186/1742-2094-5-45Search in Google Scholar PubMed PubMed Central
McPherson, C.A., Aoyama, M., and Harry, G.J. (2011). Interleukin (IL)-1 and IL-6 regulation of neural progenitor cell proliferation with hippocampal injury: differential regulatory pathways in the subgranular zone (SGZ) of the adolescent and mature mouse brain. Brain. Behav. Immun. 25, 850–862.10.1016/j.bbi.2010.09.003Search in Google Scholar PubMed PubMed Central
Miguez, D.G., Gil-Guinon, E., Pons, S., and Marti, E. (2013). Smad2 and Smad3 cooperate and antagonize simultaneously in vertebrate neurogenesis. J. Cell Sci. 126, 5335–5343.10.1242/jcs.130435Search in Google Scholar PubMed
Montgomery, S.L. and Bowers, W.J. (2012). Tumor necrosis factor-alpha and the roles it plays in homeostatic and degenerative processes within the central nervous system. J. Neuroimmune Pharmacol. 7, 42–59.10.1007/s11481-011-9287-2Search in Google Scholar PubMed
Muller, N. and Schwarz, M.J. (2007). The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression. Mol. Psychiatry 12, 988–1000.10.1038/sj.mp.4002006Search in Google Scholar PubMed
Nichol, K., Deeny, S.P., Seif, J., Camaclang, K., and Cotman, C.W. (2009). Exercise improves cognition and hippocampal plasticity in APOE epsilon4 mice. Alzheimer’s Dement. 5, 287–294.10.1016/j.jalz.2009.02.006Search in Google Scholar PubMed PubMed Central
Niu, W., Zou, Y., Shen, C., and Zhang, C.L. (2011). Activation of postnatal neural stem cells requires nuclear receptor TLX. J. Neurosci. 31, 13816–13828.10.1523/JNEUROSCI.1038-11.2011Search in Google Scholar PubMed PubMed Central
Nolan, A.M., Collins, L.M., Wyatt, S.L., Gutierrez, H., and O’Keeffe, G.W. (2014). The neurite growth inhibitory effects of soluble TNFalpha on developing sympathetic neurons are dependent on developmental age. Differentiation, research in biological diversity 88, 124–130.10.1016/j.diff.2014.12.006Search in Google Scholar PubMed
Parkhurst, C.N., Yang, G., Ninan, I., Savas, J.N., Yates, J.R., III, Lafaille, J.J., Hempstead, B.L., Littman, D.R., and Gan, W.B. (2013). Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155, 1596–1609.10.1016/j.cell.2013.11.030Search in Google Scholar PubMed PubMed Central
Perez-Asensio, F.J., Perpina, U., Planas, A.M., and Pozas, E. (2013). Interleukin-10 regulates progenitor differentiation and modulates neurogenesis in adult brain. J. Cell Sci. 126, 4208–4219.10.1242/jcs.127803Search in Google Scholar
Peters, E.M., Hansen, M.G., Overall, R.W., Nakamura, M., Pertile, P., Klapp, B.F., Arck, P.C., and Paus, R. (2005). Control of human hair growth by neurotrophins: brain-derived neurotrophic factor inhibits hair shaft elongation, induces catagen, and stimulates follicular transforming growth factor beta2 expression. J. Invest. Dermatol. 124, 675–685.10.1111/j.0022-202X.2005.23648.xSearch in Google Scholar PubMed
Pinheiro, R.M., de Lima, M.N., Portal, B.C., Busato, S.B., Falavigna, L., Ferreira, R.D., Paz, A.C., de Aguiar, B.W., Kapczinski, F., and Schroder, N. (2015). Long-lasting recognition memory impairment and alterations in brain levels of cytokines and BDNF induced by maternal deprivation: effects of valproic acid and topiramate. J. Neural. Transm. (Vienna, Austria:1996) 122, 709–719.10.1007/s00702-014-1303-2Search in Google Scholar PubMed
Ribeiro Xavier, A.L., Kress, B.T., Goldman, S.A., Lacerda de Menezes, J.R., and Nedergaard, M. (2015). A distinct population of microglia supports adult neurogenesis in the subventricular zone. J. Neurosci. 35, 11848–11861.10.1523/JNEUROSCI.1217-15.2015Search in Google Scholar PubMed PubMed Central
Ricci, S., Businaro, R., Ippoliti, F., Lo Vasco, V.R., Massoni, F., Onofri, E., Troili, G.M., Pontecorvi, V., Morelli, M., Rapp Ricciardi, M., et al. (2013). Altered cytokine and BDNF levels in autism spectrum disorder. Neurotox. Res. 24, 491–501.10.1007/s12640-013-9393-4Search in Google Scholar PubMed
Rodriguez-Martinez, G. and Velasco, I. (2012). Activin and TGF-beta effects on brain development and neural stem cells. CNS Neurol. Disord. Drug. Targets 11, 844–855.10.2174/1871527311201070844Search in Google Scholar PubMed
Rossi, C., Angelucci, A., Costantin, L., Braschi, C., Mazzantini, M., Babbini, F., Fabbri, M.E., Tessarollo, L., Maffei, L., Berardi, N., et al. (2006). Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment. Eur. J. Neurosci. 24, 1850–1856.10.1111/j.1460-9568.2006.05059.xSearch in Google Scholar PubMed
Russo, I., Caracciolo, L., Tweedie, D., Choi, S.H., Greig, N.H., Barlati, S., and Bosetti, F. (2012). 3,6′-Dithiothalidomide, a new TNF-α synthesis inhibitor, attenuates the effect of Abeta1-42 intracerebroventricular injection on hippocampal neurogenesis and memory deficit. J. Neurochem. 122, 1181–1192.10.1111/j.1471-4159.2012.07846.xSearch in Google Scholar PubMed PubMed Central
Ryan, S.M., O’Keeffe, G.W., O’Connor, C., Keeshan, K., and Nolan, Y.M. (2013). Negative regulation of TLX by IL-1beta correlates with an inhibition of adult hippocampal neural precursor cell proliferation. Brain. Behav. Immun. 33, 7–13.10.1016/j.bbi.2013.03.005Search in Google Scholar PubMed
Sandhya, V.K., Raju, R., Verma, R., Advani, J., Sharma, R., Radhakrishnan, A., Nanjappa, V., Narayana, J., Somani, B.L., Mukherjee, K.K., et al. (2013). A network map of BDNF/TRKB and BDNF/p75NTR signaling system. J. Cell. Commun. Signal. 7, 301–307.10.1007/s12079-013-0200-zSearch in Google Scholar PubMed PubMed Central
Schmidt, A.K., Reich, A., Falkenburger, B., Schulz, J.B., Brandenburg, L.O., Ribes, S., and Tauber, S.C. (2015). Adjuvant granulocyte colony-stimulating factor therapy results in improved spatial learning and stimulates hippocampal neurogenesis in a mouse model of pneumococcal meningitis. J. Neuropathol. Exp. Neurol. 74, 85–94.10.1097/NEN.0000000000000152Search in Google Scholar PubMed
Shaked, I., Tchoresh, D., Gersner, R., Meiri, G., Mordechai, S., Xiao, X., Hart, R.P., and Schwartz, M. (2005). Protective autoimmunity: interferon-gamma enables microglia to remove glutamate without evoking inflammatory mediators. J. Neurochem. 92, 997–1009.10.1111/j.1471-4159.2004.02954.xSearch in Google Scholar PubMed
Shruster, A. and Offen, D. (2014). Targeting neurogenesis ameliorates danger assessment in a mouse model of Alzheimer’s disease. Behav. Brain Res. 261, 193–201.10.1016/j.bbr.2013.12.028Search in Google Scholar PubMed
Shruster, A., Melamed, E., and Offen, D. (2010). Neurogenesis in the aged and neurodegenerative brain. Apoptosis 15, 1415–1421.10.1007/s10495-010-0491-ySearch in Google Scholar PubMed
Sierra, A., Encinas, J.M., Deudero, J.J., Chancey, J.H., Enikolopov, G., Overstreet-Wadiche, L.S., Tsirka, S.E., and Maletic-Savatic, M. (2010). Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 7, 483–495.10.1016/j.stem.2010.08.014Search in Google Scholar PubMed PubMed Central
Smith, E.D., Prieto, G.A., Tong, L., Sears-Kraxberger, I., Rice, J.D., Steward, O., and Cotman, C.W. (2014). Rapamycin and interleukin-1beta impair brain-derived neurotrophic factor-dependent neuron survival by modulating autophagy. J. Biol. Chem. 289, 20615–20629.10.1074/jbc.M114.568659Search in Google Scholar PubMed PubMed Central
Sometani, A., Kataoka, H., Nitta, A., Fukumitsu, H., Nomoto, H., and Furukawa, S. (2001). Transforming growth factor-beta1 enhances expression of brain-derived neurotrophic factor and its receptor, TrkB, in neurons cultured from rat cerebral cortex. J. Neurosci. Res. 66, 369–376.10.1002/jnr.1229Search in Google Scholar PubMed
Song, C., Zhang, Y., and Dong, Y. (2013). Acute and subacute IL-1beta administrations differentially modulate neuroimmune and neurotrophic systems: possible implications for neuroprotection and neurodegeneration. J. Neuroinflammation 10, 59.10.1186/1742-2094-10-59Search in Google Scholar
Stegeman, S., Jolly, L.A., Premarathne, S., Gecz, J., Richards, L.J., Mackay-Sim, A., and Wood, S.A. (2013). Loss of Usp9x disrupts cortical architecture, hippocampal development and TGFbeta-mediated axonogenesis. PLoS One 8, e68287.10.1371/journal.pone.0068287Search in Google Scholar PubMed PubMed Central
Stoll, P., Wuertemberger, U., Bratke, K., Zingler, C., Virchow, J.C., and Lommatzsch, M. (2012). Stage-dependent association of BDNF and TGF-beta1 with lung function in stable COPD. Respir. Res. 13, 116.10.1186/1465-9921-13-116Search in Google Scholar PubMed PubMed Central
Sulakhiya, K., Kumar, P., Jangra, A., Dwivedi, S., Hazarika, N.K., Baruah, C.C., and Lahkar, M. (2014). Honokiol abrogates lipopolysaccharide-induced depressive like behavior by impeding neuroinflammation and oxido-nitrosative stress in mice. Eur. J. Pharmacol. 744, 124–131.10.1016/j.ejphar.2014.09.049Search in Google Scholar PubMed
Swerdlow, R.H., Burns, J.M., and Khan, S.M. (2014). The Alzheimer’s disease mitochondrial cascade hypothesis: progress and perspectives. Biochim. Biophys. Acta 1842, 1219–1231.10.1016/j.bbadis.2013.09.010Search in Google Scholar PubMed PubMed Central
Tong, L., Balazs, R., Soiampornkul, R., Thangnipon, W., and Cotman, C.W. (2008). Interleukin-1 beta impairs brain derived neurotrophic factor-induced signal transduction. Neurobiol. Aging 29, 1380–1393.10.1016/j.neurobiolaging.2007.02.027Search in Google Scholar PubMed PubMed Central
Tong, L., Prieto, G.A., Kramar, E.A., Smith, E.D., Cribbs, D.H., Lynch, G., and Cotman, C.W. (2012). Brain-derived neurotrophic factor-dependent synaptic plasticity is suppressed by interleukin-1beta via p38 mitogen-activated protein kinase. J. Neurosci. 32, 17714–17724.10.1523/JNEUROSCI.1253-12.2012Search in Google Scholar PubMed PubMed Central
Tran, T.A., McCoy, M.K., Sporn, M.B., and Tansey, M.G. (2008). The synthetic triterpenoid CDDO-methyl ester modulates microglial activities, inhibits TNF production, and provides dopaminergic neuroprotection. J. Neuroinflammation 5, 14.10.1186/1742-2094-5-14Search in Google Scholar PubMed PubMed Central
Tsai, S.J. (2007). Glatiramer acetate could be a potential therapeutic agent for Parkinson’s disease through its neuroprotective and anti-inflammatory effects. Med. Hypotheses 69, 1219–1221.10.1016/j.mehy.2007.04.014Search in Google Scholar PubMed
Tu, Z.J., Hu, G.Y., and Li, Q.B. (2015). [Research progress of p70 ribosomal protein S6 kinase inhibitors]. Yao Xue Xue Bao 50, 261–271. [in Chinese].Search in Google Scholar
Villeda, S.A., Luo, J., Mosher, K.I., Zou, B., Britschgi, M., Bieri, G., Stan, T.M., Fainberg, N., Ding, Z., Eggel, A., et al. (2011). The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 477, 90–94.10.1038/nature10357Search in Google Scholar PubMed PubMed Central
Walter, J., Honsek, S.D., Illes, S., Wellen, J.M., Hartung, H.P., Rose, C.R., and Dihne, M. (2011). A new role for interferon gamma in neural stem/precursor cell dysregulation. Mol. Neurodegener. 6, 18.10.1186/1750-1326-6-18Search in Google Scholar PubMed PubMed Central
Walton, N.M., Sutter, B.M., Laywell, E.D., Levkoff, L.H., Kearns, S.M., Marshall, G.P., II, Scheffler, B., and Steindler, D. A. (2006). Microglia instruct subventricular zone neurogenesis. Glia 54, 815–825.10.1002/glia.20419Search in Google Scholar PubMed
Wang, C., Zhang, X., Teng, Z., Zhang, T., and Li, Y. (2014a). Downregulation of PI3K/Akt/mTOR signaling pathway in curcumin-induced autophagy in APP/PS1 double transgenic mice. Eur. J. Pharmacol. 740, 312–320.10.1016/j.ejphar.2014.06.051Search in Google Scholar PubMed
Wang, T., Wang, S.W., Zhang, Y., Wu, X.F., Peng, Y., Cao, Z., Ge, B.Y., Wang, X., Wu, Q., Lin, J.T., et al. (2014b). Scorpion venom heat-resistant peptide (SVHRP) enhances neurogenesis and neurite outgrowth of immature neurons in adult mice by up-regulating brain-derived neurotrophic factor (BDNF). PLoS One 9, e109977.10.1371/journal.pone.0109977Search in Google Scholar PubMed PubMed Central
Widera, D., Mikenberg, I., Elvers, M., Kaltschmidt, C., and Kaltschmidt, B. (2006). Tumor necrosis factor alpha triggers proliferation of adult neural stem cells via IKK/NF-kappaB signaling. BMC Neurosci. 7, 64.10.1186/1471-2202-7-64Search in Google Scholar PubMed PubMed Central
Worlitzer, M.M., Bunk, E.C., Hemmer, K., and Schwamborn, J.C. (2012). Anti-inflammatory treatment induced regenerative oligodendrogenesis in parkinsonian mice. Stem Cell Res. Ther. 3, 33.10.1186/scrt124Search in Google Scholar PubMed PubMed Central
Wu, M.D., Hein, A.M., Moravan, M.J., Shaftel, S.S., Olschowka, J.A., and O’Banion, M. K. (2012). Adult murine hippocampal neurogenesis is inhibited by sustained IL-1beta and not rescued by voluntary running. Brain. Behav. Immun. 26, 292–300.10.1016/j.bbi.2011.09.012Search in Google Scholar PubMed PubMed Central
Wu, M.D., Montgomery, S.L., Rivera-Escalera, F., Olschowka, J.A., and O’Banion, M.K. (2013). Sustained IL-1beta expression impairs adult hippocampal neurogenesis independent of IL-1 signaling in nestin+ neural precursor cells. Brain. Behav. Immun. 32, 9–18.10.1016/j.bbi.2013.03.003Search in Google Scholar PubMed PubMed Central
Xiao, Z., Peng, J., Yang, L., Kong, H., and Yin, F. (2015). Interleukin-1beta plays a role in the pathogenesis of mesial temporal lobe epilepsy through the PI3K/Akt/mTOR signaling pathway in hippocampal neurons. J. Neuroimmunol. 282, 110–117.10.1016/j.jneuroim.2015.04.003Search in Google Scholar PubMed
Yang, J., Jiang, Z., Fitzgerald, D.C., Ma, C., Yu, S., Li, H., Zhao, Z., Li, Y., Ciric, B., Curtis, M., et al. (2009). Adult neural stem cells expressing IL-10 confer potent immunomodulation and remyelination in experimental autoimmune encephalitis. J. Clin. Invest. 119, 3678–3691.10.1172/JCI37914Search in Google Scholar PubMed PubMed Central
Yazir, Y., Utkan, T., Gacar, N., and Aricioglu, F. (2015). Resveratrol exerts anti-inflammatory and neuroprotective effects to prevent memory deficits in rats exposed to chronic unpredictable mild stress. Physiol. Behav. 138, 297–304.10.1016/j.physbeh.2014.10.010Search in Google Scholar PubMed
Yousef, H., Conboy, M.J., Morgenthaler, A., Schlesinger, C., Bugaj, L., Paliwal, P., Greer, C., Conboy, I.M., and Schaffer, D. (2015). Systemic attenuation of the TGF-beta pathway by a single drug simultaneously rejuvenates hippocampal neurogenesis and myogenesis in the same old mammal. Oncotarget 6, 11959–11978.10.18632/oncotarget.3851Search in Google Scholar PubMed PubMed Central
Yu, H., Zhang, Z., Shi, Y., Bai, F., Xie, C., Qian, Y., Yuan, Y., and Deng, L. (2008). Association study of the decreased serum BDNF concentrations in amnestic mild cognitive impairment and the Val66Met polymorphism in Chinese Han. J. Clin. Psychiatry 69, 1104–1111.10.4088/JCP.v69n0710Search in Google Scholar
Zhou, X., Zhou, S., Li, B., Li, Q., Gao, L., Li, D., Gong, Q., Zhu, L., Wang, J., Wang, N., et al. (2015). Transmembrane TNF-α preferentially expressed by leukemia stem cells and blasts is a potent target for antibody therapy. Blood 126, 1433–1442.10.1182/blood-2015-01-624833Search in Google Scholar PubMed
Zou, J.Y. and Crews, F.T. (2005). TNFα potentiates glutamate neurotoxicity by inhibiting glutamate uptake in organotypic brain slice cultures: neuroprotection by NF-κB inhibition. Brain Res. 1034, 11–24.10.1016/j.brainres.2004.11.014Search in Google Scholar PubMed
©2016 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- The cholinergic system in the cerebellum: from structure to function
- Tanshinones and mental diseases: from chemistry to medicine
- Brain-derived neurotrophic factor: a mediator of inflammation-associated neurogenesis in Alzheimer’s disease
- SIRT1 as a therapeutic target for Alzheimer’s disease
- A systematic review of the neurobiological underpinnings of borderline personality disorder (BPD) in childhood and adolescence
- Neuroprotective properties of mitochondria-targeted antioxidants of the SkQ-type
- Imaging and machine learning techniques for diagnosis of Alzheimer’s disease
- Resting state functional magnetic resonance imaging processing techniques in stroke studies
Articles in the same Issue
- Frontmatter
- The cholinergic system in the cerebellum: from structure to function
- Tanshinones and mental diseases: from chemistry to medicine
- Brain-derived neurotrophic factor: a mediator of inflammation-associated neurogenesis in Alzheimer’s disease
- SIRT1 as a therapeutic target for Alzheimer’s disease
- A systematic review of the neurobiological underpinnings of borderline personality disorder (BPD) in childhood and adolescence
- Neuroprotective properties of mitochondria-targeted antioxidants of the SkQ-type
- Imaging and machine learning techniques for diagnosis of Alzheimer’s disease
- Resting state functional magnetic resonance imaging processing techniques in stroke studies