Home SIRT1 as a therapeutic target for Alzheimer’s disease
Article
Licensed
Unlicensed Requires Authentication

SIRT1 as a therapeutic target for Alzheimer’s disease

  • Siew Ying Wong EMAIL logo and Bor Luen Tang ORCID logo EMAIL logo
Published/Copyright: August 6, 2016
Become an author with De Gruyter Brill

Abstract

Alzheimer’s disease (AD) is the most prevalent cause of dementia in the aging population worldwide. SIRT1 deacetylation of histones and transcription factors impinge on multiple neuronal and non-neuronal targets, and modulates stress response, energy metabolism and cellular senescence/death pathways. Collectively, SIRT1 activity could potentially affect multiple aspects of hippocampal and cortical neuron function and survival, thus modifying disease onset and progression. In this review, the known and potential mechanisms of action of SIRT1 with regard to AD, and its potential as a therapeutic target, are discussed.

Acknowledgments

BLT is supported by the NUS Graduate School for Integrative Sciences and Engineering.

  1. Conflict of interest statement: The authors declare that they have no conflict of interest.

References

Ahmed, T., Van der Jeugd, A., Blum, D., Galas, M.C., D’Hooge, R., Buee, L., and Balschun, D. (2014). Cognition and hippocampal synaptic plasticity in mice with a homozygous tau deletion. Neurobiol. Aging 35, 2474–2478.10.1016/j.neurobiolaging.2014.05.005Search in Google Scholar PubMed

Alcendor, R.R., Gao, S., Zhai, P., Zablocki, D., Holle, E., Yu, X., Tian, B., Wagner, T., Vatner, S.F., and Sadoshima, J. (2007). Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ. Res. 100, 1512–1521.10.1161/01.RES.0000267723.65696.4aSearch in Google Scholar PubMed

Alzheimer’s Association. (2014). 2014 Alzheimer’s disease facts and figures. Alzheimers Dement. 10, e47–e92.10.1016/j.jalz.2014.02.001Search in Google Scholar PubMed

Anderson, R.M., Bitterman, K.J., Wood, J.G., Medvedik, O., and Sinclair, D.A. (2003). Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 423, 181–185.10.1038/nature01578Search in Google Scholar PubMed PubMed Central

Avila-Muñoz, E., and Arias, C. (2014). When astrocytes become harmful: functional and inflammatory responses that contribute to Alzheimer’s disease. Ageing Res. Rev. 18, 29–40.10.1016/j.arr.2014.07.004Search in Google Scholar PubMed

Baur, J.A., Pearson, K.J., Price, N.L., Jamieson, H.A., Lerin, C., Kalra, A., Prabhu, V.V., Allard, J.S., Lopez-Lluch, G., Lewis, K., et al. (2006). Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337–342.10.1038/nature05354Search in Google Scholar PubMed PubMed Central

Baur, J.A., Ungvari, Z., Minor, R.K., Le Couteur, D.G., and de Cabo, R. (2012). Are sirtuins viable targets for improving healthspan and lifespan? Nat. Rev. Drug Discov. 11, 443–461.10.1038/nrd3738Search in Google Scholar PubMed PubMed Central

Benito, E., Urbanke, H., Ramachandran, B., Barth, J., Halder, R., Awasthi, A., Jain, G., Capece, V., Burkhardt, S., Navarro-Sala, M., et al. (2015). HDAC inhibitor-dependent transcriptome and memory reinstatement in cognitive decline models. J. Clin. Invest. 125, 3572–3584.10.1172/JCI79942Search in Google Scholar PubMed PubMed Central

Bhalla, A., Vetanovetz, C.P., Morel, E., Chamoun, Z., Di Paolo, G., and Small, S.A. (2012). The location and trafficking routes of the neuronal retromer and its role in amyloid precursor protein transport. Neurobiol. Dis. 47, 126–134.10.1016/j.nbd.2012.03.030Search in Google Scholar PubMed PubMed Central

Bithell, A. (2011). REST: transcriptional and epigenetic regulator. Epigenomics 3, 47–58.10.2217/epi.10.76Search in Google Scholar PubMed

Blander, G. and Guarente, L. (2004). The Sir2 family of protein deacetylases. Annu. Rev. Biochem. 73, 417–435.10.1146/annurev.biochem.73.011303.073651Search in Google Scholar PubMed

Bloom, G.S. (2014). Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. J. Am. Med. Assoc. Neurol. 71, 505–508.10.1001/jamaneurol.2013.5847Search in Google Scholar PubMed

Boily, G., Seifert, E.L., Bevilacqua, L., He, X.H., Sabourin, G., Estey, C., Moffat, C., Crawford, S., Saliba, S., Jardine, K., et al. (2008). SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS One 3, e1759.10.1371/journal.pone.0001759Search in Google Scholar PubMed PubMed Central

Brownlow, M.L., Joly-Amado, A., Azam, S., Elza, M., Selenica, M.L., Pappas, C., Small, B., Engelman, R., Gordon, M.N., and Morgan, D. (2014). Partial rescue of memory deficits induced by calorie restriction in a mouse model of tau deposition. Behav. Brain Res. 271, 79–88.10.1016/j.bbr.2014.06.001Search in Google Scholar PubMed

Burnett, C., Valentini, S., Cabreiro, F., Goss, M., Somogyvári, M., Piper, M.D., Hoddinott, M., Sutphin, G.L., Leko, V., McElwee, J.J., et al. (2011). Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 477, 482–485.10.1038/nature10296Search in Google Scholar PubMed PubMed Central

Cantó, C. and Auwerx, J. (2009a). Caloric restriction, SIRT1 and longevity. Trends Endocrinol. Metab. 20, 325–331.10.1016/j.tem.2009.03.008Search in Google Scholar PubMed PubMed Central

Cantó, C. and Auwerx, J. (2009b). PGC-1α, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr. Opin. Lipidol. 20, 98–105.10.1097/MOL.0b013e328328d0a4Search in Google Scholar PubMed PubMed Central

Chakraborty, C. and Doss, C.G.P. (2013). Sirtuins family – recent development as a drug target for aging, metabolism, and age related diseases. Curr. Drug Targets 14, 666–675.10.2174/1389450111314060008Search in Google Scholar PubMed

Chang, H.C. and Guarente, L. (2014). SIRT1 and other sirtuins in metabolism. Trends Endocrinol. Metab. 25, 138–145.10.1016/j.tem.2013.12.001Search in Google Scholar PubMed PubMed Central

Chang, C., Su, H., Zhang, D., Wang, Y., Shen, Q., Liu, B., Huang, R., Zhou, T., Peng, C., Wong, C.C.L., et al. (2015). AMPK-dependent phosphorylation of GAPDH triggers Sirt1 activation and is necessary for autophagy upon glucose starvation. Mol. Cell 60, 930–940.10.1016/j.molcel.2015.10.037Search in Google Scholar PubMed

Chen, J., Zhou, Y., Mueller-Steiner, S., Chen, L.F., Kwon, H., Yi, S., Mucke, L., and Gan, L. (2005). SIRT1 protects against microglia-dependent amyloid-β toxicity through inhibiting NF-κB signaling. J. Biol. Chem. 280, 40364–40374.10.1074/jbc.M509329200Search in Google Scholar PubMed

Chen, D., Steele, A.D., Hutter, G., Bruno, J., Govindarajan, A., Easlon, E., Lin, S.J., Aguzzi, A., Lindquist, S., and Guarente, L. (2008). The role of calorie restriction and SIRT1 in prion-mediated neurodegeneration. Exp. Gerontol. 43, 1086–1093.10.1016/j.exger.2008.08.050Search in Google Scholar PubMed PubMed Central

Cheng, Y., Takeuchi, H., Sonobe, Y., Jin, S., Wang, Y., Horiuchi, H., Parajuli, B., Kawanokuchi, J., Mizuno, T., and Suzumura, A. (2014). Sirtuin 1 attenuates oxidative stress via upregulation of superoxide dismutase 2 and catalase in astrocytes. J. Neuroimmunol. 269, 38–43.10.1016/j.jneuroim.2014.02.001Search in Google Scholar PubMed

Cho, S.H., Chen, J.A., Sayed, F., Ward, M.E., Gao, F., Nguyen, T.A., Krabbe, G., Sohn, P.D., Lo, I., Minami, S., et al. (2015). SIRT1 deficiency in microglia contributes to cognitive decline in aging and neurodegeneration via epigenetic regulation of IL-1β. J. Neurosci. 35, 807–818.10.1523/JNEUROSCI.2939-14.2015Search in Google Scholar PubMed PubMed Central

Choy, R.W.Y., Cheng, Z., and Schekman, R. (2012). Amyloid precursor protein (APP) traffics from the cell surface via endosomes for amyloid β (Aβ) production in the trans-Golgi network. Proc. Natl. Acad. Sci. USA 109, E2077–E2082.10.1073/pnas.1208635109Search in Google Scholar PubMed PubMed Central

Chung, K.W., Kim, D.H., Park, M.H., Choi, Y.J., Kim, N.D., Lee, J., Yu, B.P., and Chung, H.Y. (2013). Recent advances in calorie restriction research on aging. Exp. Gerontol. 48, 1049–1053.10.1016/j.exger.2012.11.007Search in Google Scholar PubMed

Cohen, H.Y., Miller, C., Bitterman, K.J., Wall, N.R., Hekking, B., Kessler, B., Howitz, K.T., Gorospe, M., de Cabo, R., and Sinclair, D.A. (2004). Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305, 390–392.10.1126/science.1099196Search in Google Scholar PubMed

Coppé, J.P., Desprez, P.Y., Krtolica, A., and Campisi, J. (2010). The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118.10.1146/annurev-pathol-121808-102144Search in Google Scholar PubMed PubMed Central

Dar, T.A., Sheikh, I.A., Ganie, S.A., Ali, R., Singh, L.R., Gan, S.H., Kamal, M.A., and Zargar, M.A. (2014). Molecular linkages between diabetes and Alzheimer’s disease: current scenario and future prospects. CNS Neurol. Disord. Drug Targets 13, 290–298.10.2174/18715273113126660135Search in Google Scholar PubMed

Dasgupta, B. and Milbrandt, J. (2007). Resveratrol stimulates AMP kinase activity in neurons. Proc. Natl. Acad. Sci. USA 104, 7217–7222.10.1073/pnas.0610068104Search in Google Scholar PubMed PubMed Central

Dawson, G.R., Seabrook, G.R., Zheng, H., Smith, D.W., Graham, S., O’Dowd, G., Bowery, B.J., Boyce, S., Trumbauer, M.E., Chen, H.Y., et al. (1999). Age-related cognitive deficits, impaired long-term potentiation and reduction in synaptic marker density in mice lacking the beta-amyloid precursor protein. Neuroscience 90, 1–13.10.1016/S0306-4522(98)00410-2Search in Google Scholar

de Picciotto, N.E., Gano, L.B., Johnson, L.C., Martens, C.R., Sindler, A.L., Mills, K.F., Imai, S.I., and Seals, D.R. (2016). Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice. Aging Cell 15, 522–530.10.1111/acel.12461Search in Google Scholar PubMed PubMed Central

De Strooper, B. and Karran, E. (2016). The cellular phase of Alzheimer’s disease. Cell 164, 603–615.10.1016/j.cell.2015.12.056Search in Google Scholar PubMed

De Strooper, B., Iwatsubo, T., and Wolfe, M.S. (2012). Presenilins and γ-secretase: structure, function, and role in Alzheimer Disease. Cold Spring Harb. Perspect Med. 2, a006304.10.1101/cshperspect.a006304Search in Google Scholar PubMed PubMed Central

Du, L.L., Xie, J.Z., Cheng, X.S., Li, X.H., Kong, F.L., Jiang, X., Ma, Z.W., Wang, J.Z., Chen, C., and Zhou, X.W. (2014). Activation of sirtuin 1 attenuates cerebral ventricular streptozotocin-induced tau hyperphosphorylation and cognitive injuries in rat hippocampi. Age (Dordr). 36, 613–623.10.1007/s11357-013-9592-1Search in Google Scholar PubMed PubMed Central

El-Sayed, N.S. and Bayan, Y. (2015). Possible role of resveratrol targeting estradiol and neprilysin pathways in lipopolysaccharide model of Alzheimer disease. Adv. Exp. Med. Biol. 822, 107–118.10.1007/978-3-319-08927-0_12Search in Google Scholar PubMed

Endres, K. and Fahrenholz, F. (2010). Upregulation of the α-secretase ADAM10 – risk or reason for hope? FEBS J. 277, 1585–1596.10.1111/j.1742-4658.2010.07566.xSearch in Google Scholar PubMed

Fabrizio, P., Gattazzo, C., Battistella, L., Wei, M., Cheng, C., McGrew, K., and Longo, V.D. (2005). Sir2 blocks extreme life-span extension. Cell 123, 655–667.10.1016/j.cell.2005.08.042Search in Google Scholar PubMed

Falone, S., D’Alessandro, A., Mirabilio, A., Cacchio, M., Di Ilio, C., Di Loreto, S., and Amicarelli, F. (2012). Late-onset running biphasically improves redox balance, energy- and methylglyoxal-related status, as well as SIRT1 expression in mouse hippocampus. PLoS One 7, e48334.10.1371/journal.pone.0048334Search in Google Scholar PubMed PubMed Central

Farris, W., Mansourian, S., Chang, Y., Lindsley, L., Eckman, E.A., Frosch, M.P., Eckman, C.B., Tanzi, R.E., Selkoe, D.J., and Guenette, S. (2003). Insulin-degrading enzyme regulates the levels of insulin, amyloid β-protein, and the β-amyloid precursor protein intracellular domain in vivo. Proc. Natl. Acad. Sci. USA 100, 4162–4167.10.1073/pnas.0230450100Search in Google Scholar PubMed PubMed Central

Feng, X., Liang, N., Zhu, D., Gao, Q., Peng, L., Dong, H., Yue, Q., Liu, H., Bao, L., Zhang, J., et al. (2013). Resveratrol inhibits β-amyloid-induced neuronal apoptosis through regulation of SIRT1-ROCK1 signaling pathway. PLoS One 8, e59888.10.1371/journal.pone.0059888Search in Google Scholar PubMed PubMed Central

Furuya, T.K., da Silva, P.N.O., Payão, S.L.M., Rasmussen, L.T., de Labio, R.W., Bertolucci, P.H.F., Braga, I.L.S., Chen, E.S., Turecki, G., Mechawar, N., et al. (2012). SORL1 and SIRT1 mRNA expression and promoter methylation levels in aging and Alzheimer’s disease. Neurochem. Int. 61, 973–975.10.1016/j.neuint.2012.07.014Search in Google Scholar PubMed

Gao, J., Wang, W.Y., Mao, Y.W., Gräff, J., Guan, J.S., Pan, L., Mak, G., Kim, D., Su, S.C., and Tsai, L.H. (2010). A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 466, 1105–1109.10.1038/nature09271Search in Google Scholar PubMed PubMed Central

Gao, J., Zhou, R., You, X., Luo, F., He, H., Chang, X., Zhu, L., Ding, X., and Yan, T. (2016). Salidroside suppresses inflammation in a D-galactose-induced rat model of Alzheimer’s disease via SIRT1/NF-κB pathway. Metab. Brain Dis. 31, 771–778.10.1007/s11011-016-9813-2Search in Google Scholar PubMed

Ghosh, H.S., McBurney, M., and Robbins, P.D. (2010). SIRT1 negatively regulates the mammalian target of rapamycin. PLoS One 5, e9199.10.1371/journal.pone.0009199Search in Google Scholar PubMed PubMed Central

Gjoneska, E., Pfenning, A.R., Mathys, H., Quon, G., Kundaje, A., Tsai, L.H., and Kellis, M. (2015). Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer’s disease. Nature 518, 365–369.10.1038/nature14252Search in Google Scholar PubMed PubMed Central

Gräff, J., Kahn, M., Samiei, A., Gao, J., Ota, K.T., Rei, D., and Tsai, L.H. (2013). A dietary regimen of caloric restriction or pharmacological activation of SIRT1 to delay the onset of neurodegeneration. J. Neurosci. 33, 8951–8960.10.1523/JNEUROSCI.5657-12.2013Search in Google Scholar PubMed PubMed Central

Green, K.N., Steffan, J.S., Martinez-Coria, H., Sun, X., Schreiber, S.S., Thompson, L.M., and LaFerla, F.M. (2008). Nicotinamide restores cognition in Alzheimer’s disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau. J. Neurosci. 28, 11500–11510.10.1523/JNEUROSCI.3203-08.2008Search in Google Scholar PubMed PubMed Central

Guarente, L. (2013). Calorie restriction and sirtuins revisited. Genes Dev. 27, 2072–2085.10.1101/gad.227439.113Search in Google Scholar PubMed PubMed Central

Guedes-Dias, P. and Oliveira, J.M.A. (2013). Lysine deacetylases and mitochondrial dynamics in neurodegeneration. Biochim. Biophys. Acta 1832, 1345–1359.10.1016/j.bbadis.2013.04.005Search in Google Scholar PubMed

Guo, W., Qian, L., Zhang, J., Zhang, W., Morrison, A., Hayes, P., Wilson, S., Chen, T., and Zhao, J. (2011). Sirt1 overexpression in neurons promotes neurite outgrowth and cell survival through inhibition of the mTOR signaling. J. Neurosci. Res. 89, 1723–1736.10.1002/jnr.22725Search in Google Scholar

Haigis, M.C. and Sinclair, D.A. (2010). Mammalian sirtuins: biological insights and disease relevance. Annu. Rev. Pathol. 5, 253–295.10.1146/annurev.pathol.4.110807.092250Search in Google Scholar

Haque, R. and Nazir, A. (2014). Insulin-degrading enzyme: a link between Alzheimer’s and type 2 diabetes mellitus. CNS Neurol. Disord. Drug Targets 13, 259–264.10.2174/18715273113126660139Search in Google Scholar

Hasegawa, K. and Yoshikawa, K. (2008). Necdin regulates p53 acetylation via Sirtuin1 to modulate DNA damage response in cortical neurons. J. Neurosci. 28, 8772–8784.10.1523/JNEUROSCI.3052-08.2008Search in Google Scholar

Hayakawa, T., Iwai, M., Aoki, S., Takimoto, K., Maruyama, M., Maruyama, W., and Motoyama, N. (2015). SIRT1 suppresses the senescence-associated secretory phenotype through epigenetic gene regulation. PLoS One 10, e0116480.10.1371/journal.pone.0116480Search in Google Scholar

Heneka, M.T., Carson, M.J., El Khoury, J., Landreth, G.E., Brosseron, F., Feinstein, D.L., Jacobs, A.H., Wyss-Coray, T., Vitorica, J., Ransohoff, R.M., et al. (2015). Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 14, 388–405.10.1016/S1474-4422(15)70016-5Search in Google Scholar

Hernández-Jiménez, M., Hurtado, O., Cuartero, M.I., Ballesteros, I., Moraga, A., Pradillo, J.M., McBurney, M.W., Lizasoain, I., and Moro, M.A. (2013). Silent information regulator 1 protects the brain against cerebral ischemic damage. Stroke 44, 2333–2337.10.1161/STROKEAHA.113.001715Search in Google Scholar PubMed

Herranz, D., Muñoz-Martin, M., Cañamero, M., Mulero, F., Martinez-Pastor, B., Fernandez-Capetillo, O., and Serrano, M. (2010). Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat. Commun. 1, 3.10.1038/ncomms1001Search in Google Scholar PubMed PubMed Central

Herskovits, A.Z. and Guarente, L. (2014). SIRT1 in neurodevelopment and brain senescence. Neuron 81, 471–483.10.1016/j.neuron.2014.01.028Search in Google Scholar PubMed PubMed Central

Heyward, F.D., Walton, R.G., Carle, M.S., Coleman, M.A., Garvey, W.T., and Sweatt, J.D. (2012). Adult mice maintained on a high-fat diet exhibit object location memory deficits and reduced hippocampal SIRT1 gene expression. Neurobiol. Learn Mem. 98, 25–32.10.1016/j.nlm.2012.04.005Search in Google Scholar PubMed PubMed Central

Ho, L., Qin, W., Pompl, P.N., Xiang, Z., Wang, J., Zhao, Z., Peng, Y., Cambareri, G., Rocher, A., Mobbs, C.V., et al. (2004). Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer’s disease. FASEB J. 18, 902–904.10.1096/fj.03-0978fjeSearch in Google Scholar PubMed

Howitz, K.T., Bitterman, K.J., Cohen, H.Y., Lamming, D.W., Lavu, S., Wood, J.G., Zipkin, R.E., Chung, P., Kisielewski, A., Zhang, L.L., et al. (2003). Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191–196.10.1038/nature01960Search in Google Scholar PubMed

Hubbard, B.P., Gomes, A.P., Dai, H., Li, J., Case, A.W., Considine, T., Riera, T.V., Lee, J.E., E, S.Y., Lamming, D.W., et al. (2013). Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science 339, 1216–1219.10.1126/science.1231097Search in Google Scholar PubMed PubMed Central

Hubbard, B.P. and Sinclair, D.A. (2014). Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends Pharmacol. Sci. 35, 146–154.10.1016/j.tips.2013.12.004Search in Google Scholar PubMed PubMed Central

Imai, S., Armstrong, C.M., Kaeberlein, M., and Guarente, L. (2000). Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800.10.1038/35001622Search in Google Scholar PubMed

Irwin, D.J., Cohen, T.J., Grossman, M., Arnold, S.E., McCarty-Wood, E., Van Deerlin, V.M., Lee, V.M.Y., and Trojanowski, J.Q. (2013). Acetylated tau neuropathology in sporadic and hereditary tauopathies. Am. J. Pathol. 183, 344–351.10.1016/j.ajpath.2013.04.025Search in Google Scholar PubMed PubMed Central

Ittner, L.M. and Götz, J. (2011). Amyloid-β and tau – a toxic pas de deux in Alzheimer’s disease. Nat. Rev. Neurosci. 12, 65–72.10.1038/nrn2967Search in Google Scholar PubMed

Jeong, H., Cohen, D.E., Cui, L., Supinski, A., Savas, J.N., Mazzulli, J.R., Yates, J.R., Bordone, L., Guarente, L., and Krainc, D. (2011). Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway. Nat. Med. 18, 159–165.10.1038/nm.2559Search in Google Scholar PubMed PubMed Central

Jeong, J.K., Moon, M.H., Lee, Y.J., Seol, J.W., and Park, S.Y. (2013). Autophagy induced by the class III histone deacetylase Sirt1 prevents prion peptide neurotoxicity. Neurobiol. Aging 34, 146–156.10.1016/j.neurobiolaging.2012.04.002Search in Google Scholar PubMed

Jiang, M., Wang, J., Fu, J., Du, L., Jeong, H., West, T., Xiang, L., Peng, Q., Hou, Z., Cai, H., et al. (2011). Neuroprotective role of Sirt1 in mammalian models of Huntington’s disease through activation of multiple Sirt1 targets. Nat. Med. 18, 153–158.10.1038/nm.2558Search in Google Scholar PubMed PubMed Central

Jiang, S., Li, Y., Zhang, X., Bu, G., Xu, H., and Zhang, Y.W. (2014). Trafficking regulation of proteins in Alzheimer’s disease. Mol. Neurodegener. 9, 6.10.1186/1750-1326-9-6Search in Google Scholar PubMed PubMed Central

Julien, C., Tremblay, C., Emond, V., Lebbadi, M., Salem, N., Bennett, D.A., and Calon, F. (2009). Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease. J. Neuropathol. Exp. Neurol. 68, 48–58.10.1097/NEN.0b013e3181922348Search in Google Scholar PubMed PubMed Central

Kaeberlein, M. and Powers, R.W. (2007). Sir2 and calorie restriction in yeast: a skeptical perspective. Ageing Res. Rev. 6, 128–140.10.1016/j.arr.2007.04.001Search in Google Scholar PubMed

Kaeberlein, M., McVey, M., and Guarente, L. (1999). The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13, 2570–2580.10.1101/gad.13.19.2570Search in Google Scholar PubMed PubMed Central

Kanfi, Y., Naiman, S., Amir, G., Peshti, V., Zinman, G., Nahum, L., Bar-Joseph, Z., and Cohen, H.Y. (2012). The sirtuin SIRT6 regulates lifespan in male mice. Nature 483, 218–221.10.1038/nature10815Search in Google Scholar PubMed

Karran, E., Mercken, M., and De Strooper, B. (2011). The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat. Rev. Drug Discov. 10, 698–712.10.1038/nrd3505Search in Google Scholar PubMed

Kida, S. and Serita, T. (2014). Functional roles of CREB as a positive regulator in the formation and enhancement of memory. Brain Res. Bull. 105, 17–24.10.1016/j.brainresbull.2014.04.011Search in Google Scholar PubMed

Kim, D., Nguyen, M.D., Dobbin, M.M., Fischer, A., Sananbenesi, F., Rodgers, J.T., Delalle, I., Baur, J.A., Sui, G., Armour, S.M., et al. (2007). SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J. 26, 3169–3179.10.1038/sj.emboj.7601758Search in Google Scholar PubMed PubMed Central

Kinsella, K.G. (1992). Changes in life expectancy 1900–1990. Am. J. Clin. Nutr. 55, 1196S–1202S.10.1093/ajcn/55.6.1196SSearch in Google Scholar PubMed

Koronowski, K.B. and Perez-Pinzon, M.A. (2015). Sirt1 in cerebral ischemia. Brain Circ. 1, 69–78.10.4103/2394-8108.162532Search in Google Scholar PubMed PubMed Central

Lee, I.H., Cao, L., Mostoslavsky, R., Lombard, D.B., Liu, J., Bruns, N.E., Tsokos, M., Alt, F.W., and Finkel, T. (2008). A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc. Natl. Acad. Sci. USA 105, 3374–3379.10.1073/pnas.0712145105Search in Google Scholar PubMed PubMed Central

Lee, K.J., Moussa, C.E.H., Lee, Y., Sung, Y., Howell, B.W., Turner, R.S., Pak, D.T.S., and Hoe, H.S. (2010). Beta amyloid-independent role of amyloid precursor protein in generation and maintenance of dendritic spines. Neuroscience 169, 344–356.10.1016/j.neuroscience.2010.04.078Search in Google Scholar PubMed PubMed Central

Lee, H.R., Shin, H.K., Park, S.Y., Kim, H.Y., Lee, W.S., Rhim, B.Y., Hong, K.W., and Kim, C.D. (2014a). Attenuation of β-amyloid-induced tauopathy via activation of CK2α/SIRT1: targeting for cilostazol. J. Neurosci. Res. 92, 206–217.10.1002/jnr.23310Search in Google Scholar PubMed

Lee, H.R., Shin, H.K., Park, S.Y., Kim, H.Y., Lee, W.S., Rhim, B.Y., Hong, K.W., and Kim, C.D. (2014b). Cilostazol suppresses β-amyloid production by activating a disintegrin and metalloproteinase 10 via the upregulation of SIRT1-coupled retinoic acid receptor-β. J. Neurosci. Res. 92, 1581–1590.10.1002/jnr.23421Search in Google Scholar PubMed

Lee, H.R., Shin, H.K., Park, S.Y., Kim, H.Y., Bae, S.S., Lee, W.S., Rhim, B.Y., Hong, K.W., and Kim, C.D. (2015). Cilostazol upregulates autophagy via SIRT1 activation: reducing amyloid-β peptide and APP-CTFβ levels in neuronal cells. PLoS One 10, e0134486.10.1371/journal.pone.0134486Search in Google Scholar PubMed PubMed Central

Lei, P., Ayton, S., Moon, S., Zhang, Q., Volitakis, I., Finkelstein, D.I., and Bush, A.I. (2014). Motor and cognitive deficits in aged tau knockout mice in two background strains. Mol. Neurodegener. 9, 29.10.1186/1750-1326-9-29Search in Google Scholar PubMed PubMed Central

Li, Y., Xu, W., McBurney, M.W., and Longo, V.D. (2008). SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons. Cell Metab. 8, 38–48.10.1016/j.cmet.2008.05.004Search in Google Scholar PubMed PubMed Central

Li, K., Jiang, Q., Xu, A., and Liu, G. (2015a). REST rs3796529 variant does not confer susceptibility to Alzheimer’s disease. Ann. Neurol. 78, 835–836.10.1002/ana.24503Search in Google Scholar PubMed

Li, L., Sun, Q., Li, Y., Yang, Y., Yang, Y., Chang, T., Man, M., and Zheng, L. (2015b). Overexpression of SIRT1 induced by resveratrol and inhibitor of miR-204 suppresses activation and proliferation of microglia. J. Mol. Neurosci. 56, 858–867.10.1007/s12031-015-0526-5Search in Google Scholar PubMed

Lin, S.J., Defossez, P.A., and Guarente, L. (2000). Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289, 2126–2128.10.1126/science.289.5487.2126Search in Google Scholar PubMed

Liu, D., Gharavi, R., Pitta, M., Gleichmann, M., and Mattson, M.P. (2009). Nicotinamide prevents NAD+ depletion and protects neurons against excitotoxicity and cerebral ischemia: NAD+ consumption by SIRT1 may endanger energetically compromised neurons. Neuromol. Med. 11, 28–42.10.1007/s12017-009-8058-1Search in Google Scholar

Liu, M., Wilk, S.A., Wang, A., Zhou, L., Wang, R.H., Ogawa, W., Deng, C., Dong, L.Q., and Liu, F. (2010). Resveratrol inhibits mTOR signaling by promoting the interaction between mTOR and DEPTOR. J. Biol. Chem. 285, 36387–36394.10.1074/jbc.M110.169284Search in Google Scholar

Lu, T., Aron, L., Zullo, J., Pan, Y., Kim, H., Chen, Y., Yang, T.H., Kim, H.M., Drake, D., Liu, X.S., et al. (2014). REST and stress resistance in ageing and Alzheimer’s disease. Nature 507, 448–454.10.1038/nature13163Search in Google Scholar

Luo, J., Nikolaev, A.Y., Imai, S., Chen, D., Su, F., Shiloh, A., Guarente, L., and Gu, W. (2001). Negative control of p53 by Sir2α promotes cell survival under stress. Cell 107, 137–148.10.1016/S0092-8674(01)00524-4Search in Google Scholar

Lutz, M.I., Milenkovic, I., Regelsberger, G., and Kovacs, G.G. (2014). Distinct patterns of sirtuin expression during progression of Alzheimer’s disease. Neuromol. Med. 16, 405–414.10.1007/s12017-014-8288-8Search in Google Scholar

Ma, Q.L., Zuo, X., Yang, F., Ubeda, O.J., Gant, D.J., Alaverdyan, M., Kiosea, N.C., Nazari, S., Chen, P.P., Nothias, F., et al. (2014). Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris Water Maze with aging. J. Neurosci. 34, 7124–7136.10.1523/JNEUROSCI.3439-13.2014Search in Google Scholar

Mangialasche, F., Solomon, A., Winblad, B., Mecocci, P., and Kivipelto, M. (2010). Alzheimer’s disease: clinical trials and drug development. Lancet Neurol. 9, 702–716.10.1016/S1474-4422(10)70119-8Search in Google Scholar

Marwarha, G., Raza, S., Meiers, C., and Ghribi, O. (2014). Leptin attenuates BACE1 expression and amyloid-β genesis via the activation of SIRT1 signaling pathway. Biochim. Biophys. Acta 1842, 1587–1595.10.1016/j.bbadis.2014.05.015Search in Google Scholar PubMed PubMed Central

Michán, S., Li, Y., Chou, M.M.H., Parrella, E., Ge, H., Long, J.M., Allard, J.S., Lewis, K., Miller, M., Xu, W., et al. (2010). SIRT1 is essential for normal cognitive function and synaptic plasticity. J. Neurosci. 30, 9695–9707.10.1523/JNEUROSCI.0027-10.2010Search in Google Scholar PubMed PubMed Central

Milne, J.C., Lambert, P.D., Schenk, S., Carney, D.P., Smith, J.J., Gagne, D.J., Jin, L., Boss, O., Perni, R.B., Vu, C.B., et al. (2007). Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450, 712–716.10.1038/nature06261Search in Google Scholar PubMed PubMed Central

Min, S.W., Cho, S.H., Zhou, Y., Schroeder, S., Haroutunian, V., Seeley, W.W., Huang, E.J., Shen, Y., Masliah, E., Mukherjee, C., et al. (2010). Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 67, 953–966.10.1016/j.neuron.2010.08.044Search in Google Scholar PubMed PubMed Central

Min, S.W., Chen, X., Tracy, T.E., Li, Y., Zhou, Y., Wang, C., Shirakawa, K., Minami, S.S., Defensor, E., Mok, S.A., et al. (2015). Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nat. Med. 21, 1154–1162.10.1038/nm.3951Search in Google Scholar PubMed PubMed Central

Miners, J.S., Baig, S., Palmer, J., Palmer, L.E., Kehoe, P.G., and Love, S. (2008). Abeta-degrading enzymes in Alzheimer’s disease. Brain Pathol. 18, 240–252.10.1111/j.1750-3639.2008.00132.xSearch in Google Scholar PubMed PubMed Central

Mitchell, S.J., Martin-Montalvo, A., Mercken, E.M., Palacios, H.H., Ward, T.M., Abulwerdi, G., Minor, R.K., Vlasuk, G.P., Ellis, J.L., Sinclair, D.A., et al. (2014). The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Rep. 6, 836–843.10.1016/j.celrep.2014.01.031Search in Google Scholar PubMed PubMed Central

Mittal, K. and Katare, D.P. (2016). Shared links between type 2 diabetes mellitus and Alzheimer’s disease: a review. Diabetes Metab. Syndr. (in press).10.1016/j.dsx.2016.01.021Search in Google Scholar PubMed

Mouton, P.R., Chachich, M.E., Quigley, C., Spangler, E., and Ingram, D.K. (2009). Caloric restriction attenuates amyloid deposition in middle-aged dtg APP/PS1 mice. Neurosci. Lett. 464, 184–187.10.1016/j.neulet.2009.08.038Search in Google Scholar PubMed PubMed Central

Mudò, G., Mäkelä, J., Di Liberto, V., Tselykh, T.V., Olivieri, M., Piepponen, P., Eriksson, O., Mälkiä, A., Bonomo, A., Kairisalo, M., et al. (2012). Transgenic expression and activation of PGC-1α protect dopaminergic neurons in the MPTP mouse model of Parkinson’s disease. Cell Mol. Life Sci. 69, 1153–1165.10.1007/s00018-011-0850-zSearch in Google Scholar PubMed

Ng, F. and Tang, B.L. (2013a). When is Sirt1 activity bad for dying neurons? Front Cell Neurosci. 7, 186.10.3389/fncel.2013.00186Search in Google Scholar PubMed PubMed Central

Ng, F., and Tang, B.L. (2013b). Sirtuins’ modulation of autophagy. J. Cell Physiol. 228, 2262–2270.10.1002/jcp.24399Search in Google Scholar PubMed

Ng, F., Wijaya, L., and Tang, B.L. (2015). SIRT1 in the brain-connections with aging-associated disorders and lifespan. Front Cell Neurosci. 9, 64.10.3389/fncel.2015.00064Search in Google Scholar PubMed PubMed Central

Nho, K., Kim, S., Risacher, S.L., Shen, L., Corneveaux, J.J., Swaminathan, S., Lin, H., Ramanan, V.K., Liu, Y., Foroud, T.M., et al. (2015). Protective variant for hippocampal atrophy identified by whole exome sequencing. Ann. Neurol. 77, 547–552.10.1002/ana.24349Search in Google Scholar PubMed PubMed Central

Nisbet, R.M., Polanco, J.C., Ittner, L.M., and Götz, J. (2015). Tau aggregation and its interplay with amyloid-β. Acta Neuropathol. 129, 207–220.10.1007/s00401-014-1371-2Search in Google Scholar PubMed PubMed Central

North, B.J., Rosenberg, M.A., Jeganathan, K.B., Hafner, A.V., Michan, S., Dai, J., Baker, D.J., Cen, Y., Wu, L.E., Sauve, A.A., et al. (2014). SIRT2 induces the checkpoint kinase BubR1 to increase lifespan. EMBO J. 33, 1438–1453.10.15252/embj.201386907Search in Google Scholar PubMed PubMed Central

Oberdoerffer, P., Michan, S., McVay, M., Mostoslavsky, R., Vann, J., Park, S.K., Hartlerode, A., Stegmuller, J., Hafner, A., Loerch, P., et al. (2008). SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 135, 907–918.10.1016/j.cell.2008.10.025Search in Google Scholar PubMed PubMed Central

Olshansky, S.J. (2015). Has the rate of human aging already been modified? Cold Spring Harb. Perspect. Med. 5, pii: a025965.10.1101/cshperspect.a025965Search in Google Scholar

Ovadya, Y. and Krizhanovsky, V. (2014). Senescent cells: SASPected drivers of age-related pathologies. Biogerontology 15, 627–642.10.1007/s10522-014-9529-9Search in Google Scholar PubMed

Pacholec, M., Bleasdale, J.E., Chrunyk, B., Cunningham, D., Flynn, D., Garofalo, R.S., Griffith, D., Griffor, M., Loulakis, P., Pabst, B., et al. (2010). SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J. Biol. Chem. 285, 8340–8351.10.1074/jbc.M109.088682Search in Google Scholar PubMed PubMed Central

Pallàs, M., Pizarro, J.G., Gutierrez-Cuesta, J., Crespo-Biel, N., Alvira, D., Tajes, M., Yeste-Velasco, M., Folch, J., Canudas, A.M., Sureda, F.X., et al. (2008). Modulation of SIRT1 expression in different neurodegenerative models and human pathologies. Neuroscience 154, 1388–1397.10.1016/j.neuroscience.2008.04.065Search in Google Scholar PubMed

Park, S.A. (2011). A common pathogenic mechanism linking type-2 diabetes and Alzheimer’s disease: evidence from animal models. J. Clin. Neurol. 7, 10–18.10.3988/jcn.2011.7.1.10Search in Google Scholar PubMed PubMed Central

Park, S.J., Ahmad, F., Philp, A., Baar, K., Williams, T., Luo, H., Ke, H., Rehmann, H., Taussig, R., Brown, A.L., et al. (2012). Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148, 421–433.10.1016/j.cell.2012.01.017Search in Google Scholar PubMed PubMed Central

Park, S., Mori, R., and Shimokawa, I. (2013). Do sirtuins promote mammalian longevity? A critical review on its relevance to the longevity effect induced by calorie restriction. Mol. Cells 35, 474–480.10.1007/s10059-013-0130-xSearch in Google Scholar PubMed PubMed Central

Parker, J.A., Arango, M., Abderrahmane, S., Lambert, E., Tourette, C., Catoire, H., and Néri, C. (2005). Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat. Genet. 37, 349–350.10.1038/ng1534Search in Google Scholar PubMed

Piedrahita, D., Castro-Alvarez, J.F., Boudreau, R.L., Villegas-Lanau, A., Kosik, K.S., Gallego-Gomez, J.C., and Cardona-Gómez, G.P. (2015). β-secretase 1’s targeting reduces hyperphosphorylated Tau, implying autophagy actors in 3xTg-AD mice. Front Cell Neurosci. 9, 498.10.3389/fncel.2015.00498Search in Google Scholar

Porquet, D., Casadesús, G., Bayod, S., Vicente, A., Canudas, A.M., Vilaplana, J., Pelegrí, C., Sanfeliu, C., Camins, A., Pallàs, M., et al. (2013). Dietary resveratrol prevents Alzheimer’s markers and increases life span in SAMP8. Age (Dordr). 35, 1851–1865.10.1007/s11357-012-9489-4Search in Google Scholar PubMed PubMed Central

Porquet, D., Griñán-Ferré, C., Ferrer, I., Camins, A., Sanfeliu, C., Del Valle, J., and Pallàs, M. (2014). Neuroprotective role of trans-resveratrol in a murine model of familial Alzheimer’s disease. J. Alzheimers Dis. 42, 1209–1220.10.3233/JAD-140444Search in Google Scholar PubMed

Qin, W., Chachich, M., Lane, M., Roth, G., Bryant, M., de Cabo, R., Ottinger, M.A., Mattison, J., Ingram, D., Gandy, S., et al. (2006a). Calorie restriction attenuates Alzheimer’s disease type brain amyloidosis in Squirrel monkeys (Saimiri sciureus). J. Alzheimers Dis. 10, 417–422.10.3233/JAD-2006-10411Search in Google Scholar PubMed

Qin, W., Yang, T., Ho, L., Zhao, Z., Wang, J., Chen, L., Zhao, W., Thiyagarajan, M., MacGrogan, D., Rodgers, J.T., et al. (2006b). Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J. Biol. Chem. 281, 21745–21754.10.1074/jbc.M602909200Search in Google Scholar PubMed

Qiu, W.Q. and Folstein, M.F. (2006). Insulin, insulin-degrading enzyme and amyloid-beta peptide in Alzheimer’s disease: review and hypothesis. Neurobiol. Aging 27, 190–198.10.1016/j.neurobiolaging.2005.01.004Search in Google Scholar PubMed

Quintas, A., de Solís, A.J., Díez-Guerra, F.J., Carrascosa, J.M., and Bogónez, E. (2012). Age-associated decrease of SIRT1 expression in rat hippocampus: prevention by late onset caloric restriction. Exp. Gerontol. 47, 198–201.10.1016/j.exger.2011.11.010Search in Google Scholar PubMed

Ramadori, G., Lee, C.E., Bookout, A.L., Lee, S., Williams, K.W., Anderson, J., Elmquist, J.K., and Coppari, R. (2008). Brain SIRT1: anatomical distribution and regulation by energy availability. J. Neurosci. 28, 9989–9996.10.1523/JNEUROSCI.3257-08.2008Search in Google Scholar PubMed PubMed Central

Ramadori, G., Fujikawa, T., Fukuda, M., Anderson, J., Morgan, D.A., Mostoslavsky, R., Stuart, R.C., Perello, M., Vianna, C.R., Nillni, E.A., et al. (2010). SIRT1 deacetylase in POMC neurons is required for homeostatic defenses against diet-induced obesity. Cell Metab. 12, 78–87.10.1016/j.cmet.2010.05.010Search in Google Scholar PubMed PubMed Central

Ramadori, G., Fujikawa, T., Anderson, J., Berglund, E.D., Frazao, R., Michán, S., Vianna, C.R., Sinclair, D.A., Elias, C.F., and Coppari, R. (2011). SIRT1 deacetylase in SF1 neurons protects against metabolic imbalance. Cell Metab. 14, 301–312.10.1016/j.cmet.2011.06.014Search in Google Scholar PubMed PubMed Central

Raval, A.P., Dave, K.R., and Pérez-Pinzón, M.A. (2006). Resveratrol mimics ischemic preconditioning in the brain. J. Cereb. Blood Flow Metab. 26, 1141–1147.10.1038/sj.jcbfm.9600262Search in Google Scholar PubMed

Revilla, S., Suñol, C., García-Mesa, Y., Giménez-Llort, L., Sanfeliu, C., and Cristòfol, R. (2014). Physical exercise improves synaptic dysfunction and recovers the loss of survival factors in 3xTg-AD mouse brain. Neuropharmacology 81, 55–63.10.1016/j.neuropharm.2014.01.037Search in Google Scholar PubMed

Rogina, B. and Helfand, S.L. (2004). Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc. Natl. Acad. Sci. USA 101, 15998–16003.10.1073/pnas.0404184101Search in Google Scholar PubMed PubMed Central

Salloway, S., Sperling, R., Fox, N.C., Blennow, K., Klunk, W., Raskind, M., Sabbagh, M., Honig, L.S., Porsteinsson, A.P., Ferris, S., et al. (2014). Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N. Engl. J. Med. 370, 322–333.10.1056/NEJMoa1304839Search in Google Scholar PubMed PubMed Central

Sansone, L., Reali, V., Pellegrini, L., Villanova, L., Aventaggiato, M., Marfe, G., Rosa, R., Nebbioso, M., Tafani, M., Fini, M., et al. (2013). SIRT1 silencing confers neuroprotection through IGF-1 pathway activation. J. Cell Physiol. 228, 1754–1761.10.1002/jcp.24334Search in Google Scholar PubMed

Sasaki, T., Kikuchi, O., Shimpuku, M., Susanti, V.Y., Yokota-Hashimoto, H., Taguchi, R., Shibusawa, N., Sato, T., Tang, L., Amano, K., et al. (2014). Hypothalamic SIRT1 prevents age-associated weight gain by improving leptin sensitivity in mice. Diabetologia 57, 819–831.10.1007/s00125-013-3140-5Search in Google Scholar PubMed PubMed Central

Sato, N. and Morishita, R. (2015). The roles of lipid and glucose metabolism in modulation of β-amyloid, tau, and neurodegeneration in the pathogenesis of Alzheimer disease. Front Aging Neurosci. 7, 199.10.3389/fnagi.2015.00199Search in Google Scholar PubMed PubMed Central

Satoh, A., Brace, C.S., Ben-Josef, G., West, T., Wozniak, D.F., Holtzman, D.M., Herzog, E.D., and Imai, S.I. (2010). SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus. J. Neurosci. 30, 10220–10232.10.1523/JNEUROSCI.1385-10.2010Search in Google Scholar PubMed PubMed Central

Satoh, A., Brace, C.S., Rensing, N., Cliften, P., Wozniak, D.F., Herzog, E.D., Yamada, K.A., and Imai, S.I. (2013). Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab. 18, 416–430.10.1016/j.cmet.2013.07.013Search in Google Scholar PubMed PubMed Central

Schafer, M.J., Alldred, M.J., Lee, S.H., Calhoun, M.E., Petkova, E., Mathews, P.M., and Ginsberg, S.D. (2015). Reduction of β-amyloid and γ-secretase by calorie restriction in female Tg2576 mice. Neurobiol. Aging 36, 1293–1302.10.1016/j.neurobiolaging.2014.10.043Search in Google Scholar PubMed PubMed Central

Scheltens, P., Blennow, K., Breteler, M.M.B., de Strooper, B., Frisoni, G.B., Salloway, S., and Van der Flier, W.M. (2016). Alzheimer’s disease. Lancet (in press).10.1016/S0140-6736(15)01124-1Search in Google Scholar

Schenk, S., McCurdy, C.E., Philp, A., Chen, M.Z., Holliday, M.J., Bandyopadhyay, G.K., Osborn, O., Baar, K., and Olefsky, J.M. (2011). Sirt1 enhances skeletal muscle insulin sensitivity in mice during caloric restriction. J. Clin. Invest. 121, 4281–4288.10.1172/JCI58554Search in Google Scholar

Sebastián, C., Satterstrom, F.K., Haigis, M.C., and Mostoslavsky, R. (2012). From sirtuin biology to human diseases: an update. J. Biol. Chem. 287, 42444–42452.10.1074/jbc.R112.402768Search in Google Scholar

Senechal, Y., Kelly, P.H., and Dev, K.K. (2008). Amyloid precursor protein knockout mice show age-dependent deficits in passive avoidance learning. Behav. Brain Res. 186, 126–132.10.1016/j.bbr.2007.08.003Search in Google Scholar

Seo, J.S., Moon, M.H., Jeong, J.K., Seol, J.W., Lee, Y.J., Park, B.H., and Park, S.Y. (2012). SIRT1, a histone deacetylase, regulates prion protein-induced neuronal cell death. Neurobiol. Aging 33, 1110–1120.10.1016/j.neurobiolaging.2010.09.019Search in Google Scholar

Shah, S.A., Yoon, G.H., Chung, S.S., Abid, M.N., Kim, T.H., Lee, H.Y., and Kim, M.O. (2016). Novel osmotin inhibits SREBP2 via the AdipoR1/AMPK/SIRT1 pathway to improve Alzheimer’s disease neuropathological deficits. Mol. Psychiatry (in press).10.1038/mp.2016.23Search in Google Scholar

Sinclair, D.A. and Guarente, L. (1997). Extrachromosomal rDNA circles – a cause of aging in yeast. Cell 91, 1033–1042.10.1016/S0092-8674(00)80493-6Search in Google Scholar

Sinclair, D.A. and Guarente, L. (2014). Small-molecule allosteric activators of sirtuins. Annu. Rev. Pharmacol. Toxicol. 54, 363–380.10.1146/annurev-pharmtox-010611-134657Search in Google Scholar PubMed PubMed Central

Smith, M.R., Syed, A., Lukacsovich, T., Purcell, J., Barbaro, B.A., Worthge, S.A., Wei, S.R., Pollio, G., Magnoni, L., Scali, C., et al. (2014). A potent and selective Sirtuin 1 inhibitor alleviates pathology in multiple animal and cell models of Huntington’s disease. Hum. Mol. Genet. 23, 2995–3007.10.1093/hmg/ddu010Search in Google Scholar PubMed PubMed Central

Song, L., Chen, L., Zhang, X., Li, J., and Le, W. (2014). Resveratrol ameliorates motor neuron degeneration and improves survival in SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Biomed. Res. Int. 2014, 483501.10.1155/2014/483501Search in Google Scholar PubMed PubMed Central

Srivastava, S. and Haigis, M.C. (2011). Role of sirtuins and calorie restriction in neuroprotection: implications in Alzheimer’s and Parkinson’s diseases. Curr. Pharm. Des. 17, 3418–3433.10.2174/138161211798072526Search in Google Scholar

Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol. 11, 1006–1012.10.1016/S1474-4422(12)70191-6Search in Google Scholar

Sun, Q., Jia, N., Wang, W., Jin, H., Xu, J., and Hu, H. (2014). Activation of SIRT1 by curcumin blocks the neurotoxicity of amyloid-β25–35 in rat cortical neurons. Biochem. Biophys. Res. Commun. 448, 89–94.10.1016/j.bbrc.2014.04.066Search in Google Scholar PubMed

Takizawa, C., Thompson, P.L., van Walsem, A., Faure, C., and Maier, W.C. (2015a). Epidemiological and economic burden of Alzheimer’s disease: a systematic literature review of data across Europe and the United States of America. J. Alzheimers Dis. 43, 1271–1284.10.3233/JAD-141134Search in Google Scholar PubMed

Takizawa, Y., Nakata, R., Fukuhara, K., Yamashita, H., Kubodera, H., and Inoue, H. (2015b). The 4′-hydroxyl group of resveratrol is functionally important for direct activation of PPARα. PLoS One 10, e0120865.10.1371/journal.pone.0120865Search in Google Scholar PubMed PubMed Central

Tang, B.L. (2005). Alzheimer’s disease: channeling APP to non-amyloidogenic processing. Biochem. Biophys. Res. Commun. 331, 375–378.10.1016/j.bbrc.2005.03.074Search in Google Scholar PubMed

Tang, B.L. (2009a). Neuronal protein trafficking associated with Alzheimer disease: from APP and BACE1 to glutamate receptors. Cell. Adh. Migr. 3, 118–128.10.4161/cam.3.1.7254Search in Google Scholar PubMed PubMed Central

Tang, B.L. (2009b). Sirt1’s complex roles in neuroprotection. Cell. Mol. Neurobiol. 29, 1093–1103.10.1007/s10571-009-9414-2Search in Google Scholar PubMed

Tang, B.L. (2011). Sirt1’s systemic protective roles and its promise as a target in antiaging medicine. Transl. Res. 157, 276–284.10.1016/j.trsl.2010.11.006Search in Google Scholar PubMed

Tang, B.L. (2016). Sirt1 and the mitochondria. Mol. Cells 39, 87–95.10.14348/molcells.2016.2318Search in Google Scholar PubMed PubMed Central

Tang, B.L. and Liou, Y.C. (2007). Novel modulators of amyloid-beta precursor protein processing. J. Neurochem. 100, 314–323.10.1111/j.1471-4159.2006.04215.xSearch in Google Scholar PubMed

Tanzi, R.E. (2012). The genetics of Alzheimer disease. Cold Spring Harb. Perspect. Med. 2, pii: a006296.10.1101/cshperspect.a006296Search in Google Scholar PubMed PubMed Central

Theendakara, V., Patent, A., Peters Libeu, C.A., Philpot, B., Flores, S., Descamps, O., Poksay, K.S., Zhang, Q., Cailing, G., Hart, M., et al. (2013). Neuroprotective Sirtuin ratio reversed by ApoE4. Proc. Natl. Acad. Sci. USA 110, 18303–18308.10.1073/pnas.1314145110Search in Google Scholar PubMed PubMed Central

Tian, Z., Jiang, H., Liu, Y., Huang, Y., Xiong, X., Wu, H., and Dai, X. (2016). MicroRNA-133b inhibits hepatocellular carcinoma cell progression by targeting Sirt1. Exp. Cell Res. 343, 135–147.10.1016/j.yexcr.2016.03.027Search in Google Scholar PubMed

Timmers, S., Konings, E., Bilet, L., Houtkooper, R.H., van de Weijer, T., Goossens, G.H., Hoeks, J., van der Krieken, S., Ryu, D., Kersten, S., et al. (2011). Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 14, 612–622.10.1016/j.cmet.2011.10.002Search in Google Scholar PubMed PubMed Central

Tissenbaum, H.A. and Guarente, L. (2001). Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410, 227–230.10.1038/35065638Search in Google Scholar PubMed

Toorie, A.M. and Nillni, E.A. (2014). Central Sirt1 regulates energy balance via the melanocortin system and alternate pathways. Mol. Endocrinol. 28, 1423–1434.10.1210/me.2014-1115Search in Google Scholar PubMed PubMed Central

Turner, R.S., Thomas, R.G., Craft, S., van Dyck, C.H., Mintzer, J., Reynolds, B.A., Brewer, J.B., Rissman, R.A., Raman, R., Aisen, P.S., et al. (2015). A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology 85, 1383–1391.10.1212/WNL.0000000000002035Search in Google Scholar PubMed PubMed Central

Valle, C., Salvatori, I., Gerbino, V., Rossi, S., Palamiuc, L., René, F., and Carrì, M.T. (2014). Tissue-specific deregulation of selected HDACs characterizes ALS progression in mouse models: pharmacological characterization of SIRT1 and SIRT2 pathways. Cell Death Dis. 5, e1296.10.1038/cddis.2014.247Search in Google Scholar PubMed PubMed Central

van Ham, T.J., Thijssen, K.L., Breitling, R., Hofstra, R.M.W., Plasterk, R.H.A., and Nollen, E.A.A. (2008). C. elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging. PLoS Genet. 4, e1000027.10.1371/journal.pgen.1000027Search in Google Scholar PubMed PubMed Central

Vingtdeux, V. and Marambaud, P. (2012). Identification and biology of α-secretase. J. Neurochem. 120 (Suppl. 1), 34–45.10.1111/j.1471-4159.2011.07477.xSearch in Google Scholar PubMed

Viswanathan, M. and Guarente, L. (2011). Regulation of Caenorhabditis elegans lifespan by sir-2.1 transgenes. Nature 477, E1–E2.10.1038/nature10440Search in Google Scholar PubMed

Wang, J., Ho, L., Qin, W., Rocher, A.B., Seror, I., Humala, N., Maniar, K., Dolios, G., Wang, R., Hof, P.R., et al. (2005). Caloric restriction attenuates beta-amyloid neuropathology in a mouse model of Alzheimer’s disease. FASEB J. 19, 659–661.10.1096/fj.04-3182fjeSearch in Google Scholar PubMed

Wang, J., Fivecoat, H., Ho, L., Pan, Y., Ling, E., and Pasinetti, G.M. (2010). The role of Sirt1: at the crossroad between promotion of longevity and protection against Alzheimer’s disease neuropathology. Biochim. Biophys. Acta 1804, 1690–1694.10.1016/j.bbapap.2009.11.015Search in Google Scholar PubMed

Weinberg, R.B., Mufson, E.J., and Counts, S.E. (2015). Evidence for a neuroprotective microRNA pathway in amnestic mild cognitive impairment. Front Neurosci. 9, 430.10.3389/fnins.2015.00430Search in Google Scholar PubMed PubMed Central

Wood, J.G., Rogina, B., Lavu, S., Howitz, K., Helfand, S.L., Tatar, M., and Sinclair, D. (2004). Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430, 686–689.10.1038/nature02789Search in Google Scholar PubMed

Wu, A., Ying, Z., and Gomez-Pinilla, F. (2006). Oxidative stress modulates Sir2alpha in rat hippocampus and cerebral cortex. Eur. J. Neurosci. 23, 2573–2580.10.1111/j.1460-9568.2006.04807.xSearch in Google Scholar PubMed

Xiong, H., Pang, J., Yang, H., Dai, M., Liu, Y., Ou, Y., Huang, Q., Chen, S., Zhang, Z., Xu, Y., et al. (2015). Activation of miR-34a/SIRT1/p53 signaling contributes to cochlear hair cell apoptosis: implications for age-related hearing loss. Neurobiol. Aging 36, 1692–1701.10.1016/j.neurobiolaging.2014.12.034Search in Google Scholar PubMed

Yamakuchi, M., Ferlito, M., and Lowenstein, C.J. (2008). miR-34a repression of SIRT1 regulates apoptosis. Proc. Natl. Acad. Sci. USA 105, 13421–13426.10.1073/pnas.0801613105Search in Google Scholar PubMed PubMed Central

Yeung, F., Hoberg, J.E., Ramsey, C.S., Keller, M.D., Jones, D.R., Frye, R.A., and Mayo, M.W. (2004). Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 23, 2369–2380.10.1038/sj.emboj.7600244Search in Google Scholar PubMed PubMed Central

Yoshino, J., Mills, K.F., Yoon, M.J., and Imai, S.I. (2011). Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 14, 528–536.10.1016/j.cmet.2011.08.014Search in Google Scholar PubMed PubMed Central

Yoshino, J., Conte, C., Fontana, L., Mittendorfer, B., Imai, S.I., Schechtman, K.B., Gu, C., Kunz, I., Rossi Fanelli, F., Patterson, B.W., et al. (2012). Resveratrol supplementation does not improve metabolic function in nonobese women with normal glucose tolerance. Cell Metab. 16, 658–664.10.1016/j.cmet.2012.09.015Search in Google Scholar PubMed PubMed Central

Zakhary, S.M., Ayubcha, D., Dileo, J.N., Jose, R., Leheste, J.R., Horowitz, J.M., and Torres, G. (2010). Distribution analysis of deacetylase SIRT1 in rodent and human nervous systems. Anat. Rec (Hoboken). 293, 1024–1032.10.1002/ar.21116Search in Google Scholar PubMed PubMed Central

Zhang, X., Li, Y., Xu, H., and Zhang, Y.W. (2014). The γ-secretase complex: from structure to function. Front Cell Neurosci. 8, 427.10.3389/fncel.2014.00427Search in Google Scholar PubMed PubMed Central

Zhao, W., Kruse, J.P., Tang, Y., Jung, S.Y., Qin, J., and Gu, W. (2008). Negative regulation of the deacetylase SIRT1 by DBC1. Nature 451, 587–590.10.1038/nature06515Search in Google Scholar PubMed PubMed Central

Zhao, Y., Luo, P., Guo, Q., Li, S., Zhang, L., Zhao, M., Xu, H., Yang, Y., Poon, W., and Fei, Z. (2012). Interactions between SIRT1 and MAPK/ERK regulate neuronal apoptosis induced by traumatic brain injury in vitro and in vivo. Exp. Neurol. 237, 489–498.10.1016/j.expneurol.2012.07.004Search in Google Scholar PubMed

Received: 2016-4-28
Accepted: 2016-6-12
Published Online: 2016-8-6
Published in Print: 2016-12-1

©2016 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 13.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2016-0023/html
Scroll to top button