Neuroprotective properties of mitochondria-targeted antioxidants of the SkQ-type
-
Nickolay K. Isaev
, Elena V. Stelmashook
Abstract
In 2008, using a model of compression brain ischemia, we presented the first evidence that mitochondria-targeted antioxidants of the SkQ family, i.e. SkQR1 [10-(6′-plastoquinonyl)decylrhodamine], have a neuroprotective action. It was shown that intraperitoneal injections of SkQR1 (0.5–1 μmol/kg) 1 day before ischemia significantly decreased the damaged brain area. Later, we studied in more detail the anti-ischemic action of this antioxidant in a model of experimental focal ischemia provoked by unilateral intravascular occlusion of the middle cerebral artery. The neuroprotective action of SkQ family compounds (SkQR1, SkQ1, SkQTR1, SkQT1) was manifested through the decrease in trauma-induced neurological deficit in animals and prevention of amyloid-β-induced impairment of long-term potentiation in rat hippocampal slices. At present, most neurophysiologists suppose that long-term potentiation underlies cellular mechanisms of memory and learning. They consider inhibition of this process by amyloid-β1-42 as an in vitro model of memory disturbance in Alzheimer’s disease. Further development of the above studies revealed that mitochondria-targeted antioxidants could retard accumulation of hyperphosphorylated τ-protein, as well as amyloid-β1-42, and its precursor APP in the brain, which are involved in developing neurodegenerative processes in Alzheimer’s disease.
Acknowledgments
This work was done with financial support from the Russian Science Foundation (Project no. 16-15-10108, section ‘SkQs decrease brain damage after traumatic brain injury’, and no. 14-24-00107, section ‘SkQs decrease brain damage after ischemia’ and ‘SkQ in models of Alzheimer’s disease’).
References
Antonenko, Y.N., Avetisyan, A.V., Bakeeva, L.E., Chernyak, B.V., Chertkov, V.A., Domnina, L.V., Ivanova, O.Y., Izyumov, D.S., Khailova, L.S., Klishin, S.S., et al. (2008a). Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: synthesis and in vitro studies. Biochemistry (Mosc) 73, 1273–1287.10.1134/S0006297908120018Suche in Google Scholar
Antonenko, Y.N., Roginsky, V.A., Pashkovskaya, A.A., Rokitskaya, T.I., Kotova, E.A., Zaspa, A.A., Chernyak, B.V., and Skulachev, V.P. (2008b). Protective effects of mitochondria-targeted antioxidant SkQ in aqueous and lipid membrane environments. J. Membr. Biol. 222, 141–149.10.1007/s00232-008-9108-6Suche in Google Scholar
Bakeeva, L.E., Barskov, I.V., Egorov, M.V., Isaev, N.K., Kapelko, V.I., Kazachenko, A.V., Kirpatovsky, V.I., Kozlovsky, S.V., Lakomkin, V.L., Levina, S.B., et al. (2008). Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 2. Treatment of some ROS- and age-related diseases (heart arrhythmia, heart infarctions, kidney ischemia, and stroke). Biochemistry (Mosc) 73, 1288–1299.10.1134/S000629790812002XSuche in Google Scholar
Burits, M. and Bucar, F. (2000). Antioxidant activity of Nigella sativa essential oil. Phytother. Res. 14, 323–328.10.1002/1099-1573(200008)14:5<323::AID-PTR621>3.0.CO;2-QSuche in Google Scholar
Calkins, M.J., Manczak, M., and Reddy, P.H. (2012). Mitochondria-targeted antioxidant ss31 prevents amyloid β-induced mitochondrial abnormalities and synaptic degeneration in Alzheimer’s disease. Pharmaceuticals (Basel) 5, 1103–1119.10.3390/ph5101103Suche in Google Scholar
Chatagner, A., Hüppi, P.S., Ha-Vinh Leuchter, R., and Sizonenko, S. (2010). Erythropoietin and neuroprotection. Arch. Pediatr. 17, S78–S84.10.1016/S0929-693X(10)70905-2Suche in Google Scholar
Chen, X.H., Siman, R., Iwata, A., Meaney, D.F., Trojanowski, J.Q., and Smith, D.H. (2004). Long-term accumulation of amyloid-β, β-secretase, presenilin-1, and caspase-3 in damaged axons following brain trauma. Am. J. Pathol. 165, 357–371.10.1016/S0002-9440(10)63303-2Suche in Google Scholar
De Ryck, M., Van Reempts, J., Borgers, M., Wauquier, A., and Janssen, P.A. (1989). Photochemical stroke model: flunarizine prevents sensorimotor deficits after neocortical infarcts in rats. Stroke 20, 1383–1390.10.1161/01.STR.20.10.1383Suche in Google Scholar
Di Domenico, F., Barone, E., Perluigi, M., and Butterfield, D.A. (2015). Strategy to reduce free radical species in Alzheimer’s disease: an update of selected antioxidants. Expert Rev. Neurother. 15, 19–40.10.1586/14737175.2015.955853Suche in Google Scholar
Egea, J., Romero, A., Parada, E., León, R., Dal-Cim, T., and López, M.G. (2014). Neuroprotective effect of dimebon against ischemic neuronal damage. Neuroscience 267, 11–21.10.1016/j.neuroscience.2014.02.025Suche in Google Scholar
Feeney, D.M., Boyeson, M.G., Linn, R.T., Murray, H.M., and Dail, W. G. (1981). Responses to cortical injury: I. Methodology and local effects of contusions in the rat. Brain Res. 211, 67–77.10.1016/0006-8993(81)90067-6Suche in Google Scholar
Fernández-Gajardo, R., Matamala, J.M., Carrasco, R., Gutiérrez, R., Melo, R., and Rodrigo, R. (2014). Novel therapeutic strategies for traumatic brain injury: acute antioxidant reinforcement. CNS Drugs 28, 229–248.10.1007/s40263-013-0138-ySuche in Google Scholar
Genrikhs, E.E., Stelmashook, E.V., Popova, O.V., Kapay, N.A., Korshunova, G.A., Sumbatyan, N.V., Skrebitsky, V.G., Skulachev, V.P., and Isaev, N.K. (2015). Mitochondria-targeted antioxidant SkQT1 decreases trauma-induced neurological deficit in rat and prevents amyloid-β-induced impairment of long-term potentiation in rat hippocampal slices. J. Drug Target. 23, 347–352.10.3109/1061186X.2014.997736Suche in Google Scholar
Green, D.E. (1974). The electromechanochemical model for energy coupling in mitochondria. Biochim. Biophys. Acta 346, 27–78.10.1016/0304-4173(74)90011-1Suche in Google Scholar
Gupta, R. and Sen, N. (2016). Traumatic brain injury: a risk factor for neurodegenerative diseases. Rev. Neurosci. 27, 93–100.10.1515/revneuro-2015-0017Suche in Google Scholar PubMed
Hobbs, C.E., Murphy, M.P., Smith, R.A., and Oorschot, D.E. (2008). Neonatal rat hypoxia-ischemia: effect of the anti-oxidant mitoquinol and S-PBN. Pediatr. Int. 50, 481–488.10.1111/j.1442-200X.2008.02705.xSuche in Google Scholar PubMed
Isaev, N.K., Novikova, S.V., Stelmashook, E.V., Barskov, I.V., Silachev, D.N., Khaspekov, L.G., Skulachev, V.P., and Zorov, D.B. (2012). Mitochondria-targeted plastoquinone antioxidant SkQR1 decreases trauma-induced neurological deficit in rat. Biochemistry (Mosc) 77, 996–999.10.1134/S0006297912090052Suche in Google Scholar PubMed
Isaev, N.K., Stelmashook, E.V., Genrikhs, E.E., Oborina, M.V., Kapkaeva, M.R., and Skulachev, V.P. (2015). Alzheimer’s disease: an exacerbation of senile phenoptosis. Biochemistry (Mosc) 80, 1578–1581.10.1134/S0006297915120056Suche in Google Scholar PubMed
Ji, J., Kline, A.E., Amoscato, A., Samhan-Arias, A.K., Sparvero, L.J., Tyurin, V.A., Tyurina, Y.Y., Fink, B., Manole, M.D., Puccio, A.M., et al. (2012). Lipidomics identifies cardiolipin oxidation as a mitochondrial target for redox therapy of brain injury. Nat. Neurosci. 15, 1407–1413.10.1038/nn.3195Suche in Google Scholar PubMed PubMed Central
Ji, J., Baart, S., Vikulina, A.S., Clark, R.S., Anthonymuthu, T.S., Tyurin, V.A., Du, L., St Croix, C.M., Tyurina, Y.Y., Lewis, J., et al. (2015). Deciphering of mitochondrial cardiolipin oxidative signaling in cerebral ischemia-reperfusion. J. Cereb. Blood Flow Metab. 35, 319–328.10.1038/jcbfm.2014.204Suche in Google Scholar PubMed PubMed Central
Johnson, V.E., Stewart, W., and Smith, D.H. (2010). Traumatic brain injury and amyloid-β pathology: a link to Alzheimer’s disease? Nat. Rev. Neurosci. 11, 361–370.10.1038/nrn2808Suche in Google Scholar
Jolkkonen, J., Puurunen, K., Rantakumi, S., Harkonen, A., Haapalinna, A., and Sivenius, J. (2000). Behavioral effects of the α2-adrenoceptor antagonist, atipamezole, after focal cerebral ischemia in rats. Eur. J. Pharmacol. 400, 211–219.10.1016/S0014-2999(00)00409-XSuche in Google Scholar
Kapay, N.A., Isaev, N.K., Stelmashook, E.V., Popova, O.V., Zorov, D.B., Skrebitsky, V.G., and Skulachev, V.P. (2011). In vivo injected mitochondria-targeted plastoquinone antioxidant SkQR1 prevents β-amyloid-induced decay of long-term potentiation in rat hippocampal slices. Biochemistry (Mosc) 76, 1367–1370.10.1134/S0006297911120108Suche in Google Scholar PubMed
Kapay, N.A., Popova, O.V., Isaev, N.K., Stelmashook, E.V., Kondratenko, R.V., Zorov, D.B., Skrebitsky, V.G., and Skulachev, V.P. (2013). Mitochondria-targeted plastoquinone antioxidant SkQ1 prevents amyloid-β-induced impairment of long-term potentiation in rat hippocampal slices. J. Alzheimer’s Dis. 36, 377–383.10.3233/JAD-122428Suche in Google Scholar PubMed
Kapinya, K.J., Löwl, D., Futterer, C., Maurer, M., Waschke, K.F., Isaev, N.K., and Dirnagl, U. (2002). Tolerance against ischemic neuronal injury can be induced by volatile anesthetics and is inducible NO synthase dependent. Stroke 33, 1889–1898.10.1161/01.STR.0000020092.41820.58Suche in Google Scholar PubMed
Kirpatovsky, V.I., Plotnikov, E.Y., Mudraya, I.S., Golovanov, S.A., Drozhzheva, V.V., Khromov, R.A., Chernikov, D.Y., Skulachev, V.P., and Zorov, D.B. (2013). Role of oxidative stress and mitochondria in onset of urinary bladder dysfunction under acute urine retention. Biochemistry (Mosc) 78, 542–548.10.1134/S0006297913050131Suche in Google Scholar PubMed
Lloret, A., Badia, M.C., Giraldo, E., Ermak, G., Alonso, M.D., Pallardo, F.V., Davies, K.J.A., and Vina, J. (2011). Amyloid-β toxicity and tau hyperphosphorylation are linked via RCAN1 in Alzheimer’s disease. J. Alzheimer’s Dis. 27, 701–709.10.3233/JAD-2011-110890Suche in Google Scholar PubMed PubMed Central
Loshchenova, P.S., Sinitsyna, O.I., Fedoseeva, L.A., Stefanova, N.A., and Kolosova, N.G. (2015). Influence of antioxidant SkQ1 on accumulation of mitochondrial DNA deletions in the hippocampus of senescence-accelerated OXYS rats. Biochemistry (Mosc) 80, 596–603.10.1134/S0006297915050120Suche in Google Scholar PubMed
Ma, T., Hoeffer, C.A., Wong, H., Massaad, C.A., Zhou, P., Iadecola, C., Murphy, M.P., Pautler, R.G., and Klann, E. (2011). Amyloid β-induced impairments in hippocampal synaptic plasticity are rescued by decreasing mitochondrial superoxide. J. Neurosci. 31, 5589–5595.10.1523/JNEUROSCI.6566-10.2011Suche in Google Scholar PubMed PubMed Central
Manczak, M., Mao, P., Calkins, M.J., Cornea, A., Reddy, A.P., Murphy, M.P., Szeto, H.H., Park, B., and Reddy, P.H. (2010). Mitochondria-targeted antioxidants protect against amyloid-β toxicity in Alzheimer’s disease neurons. J. Alzheimers Dis. 20, S609–S631.10.3233/JAD-2010-100564Suche in Google Scholar PubMed PubMed Central
McManus, M.J., Murphy, M.P., and Franklin, J.L. (2011). The mitochondria-targeted antioxidant MitoQ prevents loss of spatial memory retention and early neuropathology in a transgenic mouse model of Alzheimer’s disease. J. Neurosci. 31, 15703–15715.10.1523/JNEUROSCI.0552-11.2011Suche in Google Scholar PubMed PubMed Central
Persson, T., Popescu, B.O., and Cedazo-Minguez, A. (2014). Oxidative stress in Alzheimer’s disease: why did antioxidant therapy fail? Oxid. Med. Cell. Longev. 2014, Article ID 427318.10.1155/2014/427318Suche in Google Scholar PubMed PubMed Central
Plotnikov, E.Y., Silachev, D.N., Chupyrkina, A.A., Danshina, M.I., Jankauskas, S.S., Morosanova, M.A., Stelmashook, E.V., Vasileva, A.K., Goryacheva, E.S., Pirogov, Y.A., et al. (2010). New-generation Skulachev ions exhibiting nephroprotective and neuroprotective properties. Biochemistry (Mosc) 75, 145–150.10.1134/S0006297910020045Suche in Google Scholar
Severina, I.I., Severin, F.F., Korshunova, G.A., Sumbatyan, N.V., Ilyasova, T.M., Simonyan, R.A., Rogov, A.G., Trendeleva, T.A., Zvyagilskaya, R.A., Dugina, V.B., et al. (2013). In search of novel highly active mitochondria-targeted antioxidants: thymoquinone and its cationic derivatives. FEBS Lett. 587, 2018–2024.10.1016/j.febslet.2013.04.043Suche in Google Scholar PubMed
Shively, S., Scher, A.I., Perl, D.P., and Diaz-Arrastia, R. (2012). Dementia resulting from traumatic brain injury: what is the pathology? Arch. Neurol. 69, 1245–1251.10.1001/archneurol.2011.3747Suche in Google Scholar PubMed PubMed Central
Silachev, D.N., Isaev, N.K., Pevzner, I.B., Zorova, L.D., Stelmashook, E.V., Novikova, S.V., Plotnikov, E.Y., Skulachev, V.P., and Zorov, D.B. (2012). The mitochondria-targeted antioxidants and remote kidney preconditioning ameliorate brain damage through kidney-to-brain cross-talk. PLoS One 7, e51553.10.1371/journal.pone.0051553Suche in Google Scholar PubMed PubMed Central
Silachev, D.N., Plotnikov, E.Y., Zorova, L.D., Pevzner, I.B., Sumbatyan, N.V., Korshunova, G.A., Gulyaev, M.V., Pirogov, Y.A., Skulachev, V.P., and Zorov, D.B. (2015). Neuroprotective effects of mitochondria-targeted plastoquinone and thymoquinone in a rat model of brain ischemia/reperfusion injury. Molecules 20, 14487–14503.10.3390/molecules200814487Suche in Google Scholar PubMed PubMed Central
Skulachev, V.P. (2007). A biochemical approach to the problem of aging: “Megaproject” on membrane-penetrating ions. The first results and prospects. Biochemistry (Mosc) 72, 1385–1396.10.1134/S0006297907120139Suche in Google Scholar
Skulachev, V.P. (2012). Mitochondria-targeted antioxidants as promising drugs for treatment of age-related brain diseases. J. Alzheimer’s Dis. 28, 283–289.10.3233/JAD-2011-111391Suche in Google Scholar PubMed
Skulachev, V.P., Anisimov, V.N., Antonenko, Y.N., Bakeeva, L.E., Chernyak, B.V., Erichev, V.P., Filenko, O.F., Kalinina, N.I., Kapelko, V.I., Kolosova, N.G., et al. (2009). An attempt to prevent senescence: a mitochondrial approach. Biochim. Biophys. Acta 1787, 437–461.10.1016/j.bbabio.2008.12.008Suche in Google Scholar PubMed
Skulachev, M.V., Antonenko, Y.N., Anisimov, V.N., Chernyak, B.V., Cherepanov, D.A., Chistyakov, V.A., Egorov, M.V., Kolosova, N.G., Korshunova, G.A., Lyamzaev, K.G., et al. (2011). Mitochondrial-targeted plastoquinone derivatives. Effect on senescence and acute age-related pathologies. Curr. Drug Targets. 12, 800–826.10.2174/138945011795528859Suche in Google Scholar PubMed
Skulachev, V.P., Isaev, N.K., Kapay, N.A., Popova, O.V., Stelmashook, E.V., Lyamzaev, K.G., Scharonova, I.N., Zorov, D.B., and Skrebitsky, V.G. (2014). Mitochondria-Targeted Antioxidants and Alzheimer’s Disease. Aging: Oxidative Stress and Dietary Antioxidants. V.R. Preedy, ed. (London, UK: Academic Press/Elsevier), pp. 195–201.10.1016/B978-0-12-405933-7.00019-6Suche in Google Scholar
Stefanova, N.A., Muraleva, N.A., Skulachev, V.P., and Kolosova, N.G. (2014). Alzheimer’s disease-like pathology in senescence-accelerated OXYS rats can be partially retarded with mitochondria-targeted antioxidant SkQ1. J. Alzheimer’s Dis. 38, 681–694.10.3233/JAD-131034Suche in Google Scholar PubMed
Stelmashook, E.V., Stavrovskaya, A.V., Yamshchikova, N.G., Ol’shanskii, A.S., Kapay, N.A., Popova, O.V., Khaspekov, L.G., Skrebitsky, V.G., and Isaev, N.K. (2015). Mitochondria-targeted plastoquinone antioxidant SkQR1 has positive effect on memory of rats. Biochemistry (Mosc) 80, 592–595.10.1134/S0006297915050119Suche in Google Scholar PubMed
Ułamek-Kozioł, M., Pluta, R., Bogucka-Kocka, A., Januszewski, S., Kocki, J., and Czuczwar, S.J. (2016). Brain ischemia with Alzheimer phenotype dysregulates Alzheimer’s disease-related proteins. Pharmacol. Rep. 68, 582–591.10.1016/j.pharep.2016.01.006Suche in Google Scholar PubMed
Vermeer, S.E., Prins, N.D., den Heijer, T., Hofman, A., Koudstaal, P.J., and Breteler, M.M. (2003). Silent brain infarcts and the risk of dementia and cognitive decline. N. Engl. J. Med. 348, 1215–1222.10.1056/NEJMoa022066Suche in Google Scholar PubMed
Walker, K.R., Kang, E.L., Whalen, M.J., Shen, Y., and Tesco, G. (2012). Depletion of GGA1 and GGA3 mediates post injury elevation of BACE1. J. Neurosci. 32, 10423–10437.10.1523/JNEUROSCI.5491-11.2012Suche in Google Scholar PubMed PubMed Central
Watanabe, S., Hoffman, J.R., Craik, R.L., Hand, P.J., Croul, S.E., Reivich, M., and Greenberg, J.H. (2001). A new model of localized ischemia in rat somatosensory cortex produced by cortical compression. Stroke 32, 2615–2623.10.1161/hs1101.097384Suche in Google Scholar PubMed
Xiong, Y., Mahmood, A., and Chopp, M. (2013). Animal models of traumatic brain injury. Nat. Rev. Neurosci. 14, 128–142.10.1038/nrn3407Suche in Google Scholar PubMed PubMed Central
Yang, S.T., Hsiao, I.T., Hsieh, C.J., Chiang, Y.H., Yen, T.C., Chiu, W.T., Lin, K.J., and Hu, C.J. (2015). Accumulation of amyloid in cognitive impairment after mild traumatic brain injury. J. Neurol. Sci. 349, 99–104.10.1016/j.jns.2014.12.032Suche in Google Scholar PubMed
Yani, E.V., Katargina, L.A., Chesnokova, N.B., Beznos, O.V., Savchenkov, A.Yu., Vygodin, V.A., Gudkova, E.Yu., Zamyatin, A.A., and Skulachev, M.V. (2012). The first experience of using the drug Visomitin in the treatment of “dry eyes”. Pract. Med. 59, 134–137. (Russ.).Suche in Google Scholar
©2016 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- The cholinergic system in the cerebellum: from structure to function
- Tanshinones and mental diseases: from chemistry to medicine
- Brain-derived neurotrophic factor: a mediator of inflammation-associated neurogenesis in Alzheimer’s disease
- SIRT1 as a therapeutic target for Alzheimer’s disease
- A systematic review of the neurobiological underpinnings of borderline personality disorder (BPD) in childhood and adolescence
- Neuroprotective properties of mitochondria-targeted antioxidants of the SkQ-type
- Imaging and machine learning techniques for diagnosis of Alzheimer’s disease
- Resting state functional magnetic resonance imaging processing techniques in stroke studies
Artikel in diesem Heft
- Frontmatter
- The cholinergic system in the cerebellum: from structure to function
- Tanshinones and mental diseases: from chemistry to medicine
- Brain-derived neurotrophic factor: a mediator of inflammation-associated neurogenesis in Alzheimer’s disease
- SIRT1 as a therapeutic target for Alzheimer’s disease
- A systematic review of the neurobiological underpinnings of borderline personality disorder (BPD) in childhood and adolescence
- Neuroprotective properties of mitochondria-targeted antioxidants of the SkQ-type
- Imaging and machine learning techniques for diagnosis of Alzheimer’s disease
- Resting state functional magnetic resonance imaging processing techniques in stroke studies