Abstract
Lead-borate glasses with Eu, Y, La, or Sm oxides were investigated for their radiation shielding capabilities across a broad range of energies. Due to the glasses’ varying content, each sample had varying densities, with the Sm glass having the highest density and the Y glass having the least. At lower energies, the MAC values followed the Y2O3 < La2O3 < Sm2O3 < Eu2O3 order, while at higher energies the MACs are practically identical. The glasses’ LACs showed an inverse energy relationship, such as those of the Y glass which are 0.946, 0.439, and 0.293 cm−1 at 0.284, 0.511, and 0.826 MeV, respectively. The Zeff of the glasses are in the order of Eu > Sm > La > Y, which corresponds to the relative order of the sample-based additives’ atomic numbers. The RPEs of the glasses revealed the Sm glass to have slightly greater protection efficiency than the Eu glass, while increasing the thickness of the sample greatly improved the shielding effectiveness. The ratio of the reference glass’s HVL to each of a set of compared glasses’ LAC showed that the Sm glass is a viable glass for radiation shielding applications.
-
Research ethics: The author declares that there is no conflict of interest.
-
Informed consent: Not applicable.
-
Author contributions: Material preparation, data collection, analysis, funding and manuscript as a whole (writing the draft manuscript and revision the final form) were prepared by the authors of the manuscript M.I Sayyed and Aljawhara H. Almuqrin.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The author declares that there is no conflict of interest.
-
Research funding: The authors express their gratitude to Princess Nourah bint. Abdulrahman University Researchers Supporting Project number. (PNURSP2025R2), Princess Nourah bint Abdulrahman. University, Riyadh, Saudi Arabia.
-
Data availability: All data generated or analyzed during this study are included in this published article.
References
1. Tursucu, A.; Elmahroug, Y.; Yılmaz, D. Radiation Shielding Calculations of Some Selected Rare Earth Oxides. Radiat. Phys. Chem. 2023, 212, 111066; https://doi.org/10.1016/j.radphyschem.2023.111066.Search in Google Scholar
2. Mahrous, E. M.; Al-Baradi, A. M.; Shaaban, Kh. S.; Ashour, A.; Issa, S. A. M.; Zakaly, H. M. H. Impact of CdO on Optical, Physical, and Radiation Resistance of Sodium Borophosphate Glasses. Opt. Mater. 2024, 157, 116057; https://doi.org/10.1016/j.optmat.2024.116057.Search in Google Scholar
3. Issa, S. A. M.; Hassan, A. M.; Algethami, M.; Zakaly, H. M. H. Structural, Linear/nonlinear Optical Characteristics and Radiation Shielding Effectiveness of Cu4O3/Cu2O Dual-Phase Thin Films: Influence of Oxygen Flow Rate in Reactive Sputtering Process. Ceram. Int. 2024, 50, 38281–38292; https://doi.org/10.1016/j.ceramint.2024.07.192.Search in Google Scholar
4. Mahmoud, K. A.; Lacomme, E.; Sayyed, M. I.; Ozpolat, O. F.; Tashlykov, O. L.; Investigation of the Gamma Ray Shielding Properties for Polyvinyl Chloride Reinforced with Chalcocite and Hematite Minerals. Heliyon 2020, 6, e03560, https://doi.org/10.1016/j.heliyon.2020.e03560Search in Google Scholar PubMed PubMed Central
5. Esawii, H. A.; Salama, E.; El-ahll, L. S.; Mohamed, M.; Saleh, H. M. High Impact Tungsten-Doped Borosilicate Glass Composite for Gamma and Neutron Transparent Radiation Shielding. Prog. Nucl. Energy 2022, 150, 104321; https://doi.org/10.1016/j.pnucene.2022.104321.Search in Google Scholar
6. Singh, K. J.; Kaur, S.; Kaundal, R. S. Comparative Study of Gamma Ray Shielding and Some Properties of PbO–SiO2–Al2O3 and Bi2O3–SiO2–Al2O3 Glass Systems. Radiation PhysicsandChemistry 2014, 96, 153–157; https://doi.org/10.1016/j.radphyschem.2013.09.015.Search in Google Scholar
7. Rachniyom, W.; Chaiphaksa, W.; Limkitjaroeanporn, P.; Tuschaoen, S.; Sangwaranateec, N.; Kaewkhao, J. Effect of Bi2O3 on Radiation Shielding Properties of Glasses from Coal Fly Ash. Mater. Today: Proc. 2018, 5, 14046–14051; https://doi.org/10.1016/j.matpr.2018.02.059.Search in Google Scholar
8. Gomaa, H. M.; Yahia, I. S.; Zahren, H. Y.; Saudi, H. A.; El-Dosokey, A. H. Effect of Replacement of SiO2 with BaTiO3 on the Cadmium Calcium-Borate Glass: Aiming to Obtain an Active Glass for Optical and Shielding Applications. Radiat. Phys. Chem. 2022, 193, 109955; https://doi.org/10.1016/j.radphyschem.2021.109955.Search in Google Scholar
9. Mhareb, M. H. A.; Mahmoud, K. A.; Sayyed, M. I.; Kh Hamad, M.; Jawad Kadhim, A.; Kaky, K. M.; Mahdi, M. A. Improving Structural, Optical, and Ionizing Absorption Features of G-T-B Glass System by Doping Different Concentration of Sm2O3. Ceram. Int. 2025, 51, 3809–3819; https://doi.org/10.1016/j.ceramint.2024.11.356.Search in Google Scholar
10. Mhareb, M. H. A.; Sayyed, M. I.; Mahdi, R. I.; Kaky, K. M.; Kh Hamad, M. Abed Jawad Kadhim, Role of Nd (III) Ions on B2O3–TeO2-GeO2-MgO Glass Composition for Optical and Ionizing Protection Application. Nucl. Eng. Technol. 2025, 57, 103162; https://doi.org/10.1016/j.net.2024.08.031.Search in Google Scholar
11. Zakaly, H. M. H.; Issa, S. A. M.; Saudi, H. A.; Soliman, T. S. Decoding the Role of Bismuth Oxide in Advancing Structural, Thermal, and Nuclear Properties of [B2O3–Li2O–SiO2]-Nb2O5 Glass Systems. Radiat. Phys. Chem. 2024, 223, 111984; https://doi.org/10.1016/j.radphyschem.2024.111984.Search in Google Scholar
12. Showahy, A. A.; Elsaman, R.; Issa, S. A. M.; El-Denglawey, A.; Saddeek, Y. B. Effect of PbO on the Elastic and Radiation Shielding Properties of B2O3–Bi2O3–Al2O3–CuO Glasses. Radiat. Phys. Chem. 2022, 196, 110129; https://doi.org/10.1016/j.radphyschem.2022.110129.Search in Google Scholar
13. Maghrbi, Y.; Chouchen, M.; Boussi Rahmouni, H. Exploring Transmission Factor in High-Density Glasses: The Effects of ZnO and Bi2O3 Concentrations. Nexus Future Mater. 2024, 1, 120–125. https://doi.org/10.70128/585023.Search in Google Scholar
14. Aygün, B. Neutron and Gamma Radiation Shielding Ni Based New Type Super Alloys Development and Production by Monte Carlo Simulation Technique. Radiat. Phys. Chem. 2021, 188, 109630; https://doi.org/10.1016/j.radphyschem.2021.109630.Search in Google Scholar
15. Algethami, M.; Roya, B. M.; Yu Ivanov, V.; Issa, S. A. M.; Uddin Khandaker, M.; Iskender, A.; Zakaly, H. M. H. A Promising Alternative: A Pathway to Superior Mechanical and Radiation Shielding Performance of Ternary TeO2–ZnO–NiO Glass System. Radiat. Phys. Chem. 2025, 229, 112479; https://doi.org/10.1016/j.radphyschem.2024.112479.Search in Google Scholar
16. Abdurabu Thabit, H.; Khamim Ismail, A.; Alajerami, Y. S. M.; Mhareb, M. H. A.; Hashim, S.; Mitwalli, M. Thermal, and Radiation Shielding Properties of SrO–B2o3–TeO2–ZnO–Bi2O3 Glasses Doped with Dy2O3. Ceram. Int. 2024, 50, 29776–29786; https://doi.org/10.1016/j.ceramint.2024.05.273.Search in Google Scholar
17. Usman, I.; Sanusi, M. S. M.; Ahmad, N. E.; Abdurabu Thabit, H. Optical, Thermal, and Radiation Shielding Characterization of Bismuth-Modified Zinc-Lithium-Tungsten-Borate Glass. Phys. Scr. 2024, 99, 125972; https://doi.org/10.1088/1402-4896/ad911d.Search in Google Scholar
18. Sayyed, M. I.; Hashim, S.; Alwabsi, A.; Alonizan, N.; Kh Hamad, M.; Alajerami, Y. S. M.; Kochkar, H.; Mhareb, M. H. A. Gamma, Neutron, and Charged Particles Shielding Features and Structural Properties for Barium Tellurite Glass Modified by Various Oxides. J. Mater. Sci.: Mater. Electron. 2023, 34, 180; https://doi.org/10.1007/s10854-022-09608-5.Search in Google Scholar
19. Hamad, M.Kh. Effect of WO3 on Structural, Optical, Mechanical, and Ionizing Radiation Shielding Properties of Borate-Tellurite Glass Network. Ceram. Int. 2025, 51, 9763–9771; https://doi.org/10.1016/j.ceramint.2024.12.407.Search in Google Scholar
20. Mhareb, M. H. A.; Mekki, A.; Alwabsi, A.; Almaimouni, A.; Abdurabu Thabit, H.; Alshwaira, N.; Ahmad Alsaleh, I.; Awn Al-Dhahi, F. X-Ray Photoelectron Spectroscopy, Structural, and Radiation Shielding Properties for Transparent Borosilicate Glasses. Opt. Mater. 2024, 152, 115488; https://doi.org/10.1016/j.optmat.2024.115488.Search in Google Scholar
21. Effendy, N.; Zaid, M. H. M.; Matori, K. A.; Iskandar, S. M.; Hisam, R.; Azlan, M. N.; Yusof, N. N.; Zakaly, H. M. H.; Issa, S. A. M.; Saddeek, Y. B. Fabrication of Novel BaO–Al2O3–Bi2O3–B2o3 Glass System: Comprehensive Study on Elastic, Mechanical and Shielding Properties. Prog. Nucl. Energy 2022, 153, 104418; https://doi.org/10.1016/j.pnucene.2022.104418.Search in Google Scholar
22. Alajerami, M. H. A.; Alajerami, Y. S. M.; Dwaikat, N.; Al-Buriahi, M. S.; Alqahtani, M.; Alshahri, F.; Saleh, N.; Alonizan, M. A.; Saleh, M.; Sayyed, I. Investigation of Photon, Neutron and Proton Shielding Features of H3BO3–ZnO–Na2O–BaO Glass System. Nuclear Eng. Technol. 2021, 53, 949–959; https://doi.org/10.1016/j.net.2020.07.035.Search in Google Scholar
23. Saadu Itas, Y.; Uddin Khandaker, M.; Ali Hassan, R.; Al-Ahmary, K. M.; Al-Mhyawi, S. R.; Alshdoukhi, I. F.; Al-Otaibi, J. S.; Issa, S. A. M. Investigations on Transition Metals (Zn, Co) and Alkali Metals (Ca, Na) Boro-Tellurite Glasses for Gamma Ray Sensing Applications: Physical Properties and Gamma Ray Attenuation Aspects. Radiat. Phys. Chem. 2025, 232, 112616; https://doi.org/10.1016/j.radphyschem.2025.112616.Search in Google Scholar
24. Acikgoz, A.; Demircan, G.; Yılmaz, D.; Aktas, B.; Yalcin, S.; Yorulmaz, N. Structural, Mechanical, Radiation Shielding Properties and Albedo Parameters of Alumina Borate Glasses: Role of CeO2 and Er2O3. Mater. Sci. Eng.: B 2022, 276, 115519; https://doi.org/10.1016/j.mseb.2021.115519.Search in Google Scholar
25. Ahmadi, M.; Vahid, Z.; Darush, N. Investigated Mechanical, Physical Parameters and Gamma-Neutron Radiation Shielding of the Rare Earth (Er2O3/CeO2) Doped Barium Borate Glass: Role of the Melting Time and Temperature. Radiat. Phys. Chem. 2024, 217, 111450; https://doi.org/10.1016/j.radphyschem.2023.111450.Search in Google Scholar
26. Kozlovskiy, A. L.; Zdorovets, M. V. Effect of Doping of Ce4+/3+ on Optical, Strength and Shielding Properties of (0.5-x)TeO2-0.25MoO-0.25Bi2O3-xCeO2 Glasses. Mater. Chem. Phys. 2021, 263, 124444; https://doi.org/10.1016/j.matchemphys.2021.124444.Search in Google Scholar
27. Saleh, A.; El-Feky, M. G.; Hafiz, M. S.; Kawady, N. A. Experimental and Theoretical Investigation on Physical, Structure and Protection Features of TeO2-B2o3 Glass Doped with PbO in Terms of Gamma, Neutron, Proton and Alpha Particles. Radiat. Phys. Chem. 2022, 202, 110586; https://doi.org/10.1016/j.radphyschem.2022.110586.Search in Google Scholar
28. Şakar, E.; Özpolat, Ö. F.; Alım, B.; Sayyed, M. I.; Kurudirek, M. Phy-X/PSD: Development of a User Friendly Online Software for Calculation of Parameters Relevant to Radiation Shielding and Dosimetry. Radiat. Phys. Chem. 2020, 166, 108496; https://doi.org/10.1016/j.radphyschem.2019.108496.Search in Google Scholar
29. Sayyed, M. I.; Almuqrin, A. H.; Mahmoud, K. A. New Lead Barium Borate Glass System for Radiation Shielding Applications: Impacts of copper(II)oxide on Physical, Mechanical, and Gamma-Ray Attenuation Properties. Radiochim. Acta 2024, 125, 805–815. https://doi.org/10.1515/ract.Search in Google Scholar
30. Sayyed, M. I.; Kh Hamad, M.; Mhareb, M. H. A.; Prabhu, N. S.; Khosravi, H.; Kamath, S. D. Effect of Different Modifiers on Mechanical and Radiation Shielding Properties of SrO-B2o3-TeO2 Glass System. Optik-Int. J. Light Electron Opt. 2022, 257, 168823; https://doi.org/10.1016/j.ijleo.2022.168823.Search in Google Scholar
31. Almuqrin, A. H.; Elsafi, M.; Sayyed, M. I. Radiation Shielding Characteristics of PbO–BaO–B2o3–ZnO Glass System against Gamma Rays: Experimental Study. Opt. Quant. Electron. 2024, 56, 1121; https://doi.org/10.1007/s11082-024-07026-x.Search in Google Scholar
32. El-Sharkawy, R. M.; Shaaban, Kh.S.; Elsaman, R.; Allam, E. A.; El-Taher, A.; Mahmoud, M. E. Investigation of Mechanical and Radiation Shielding Characteristics of Novel Glass Systems with the Composition xNiO-20ZnO-60b2o3-(20-X) CdO Based on Nanometal Oxides. J. Non-Cryst. Solids 2020, 528, 119754; https://doi.org/10.1016/j.jnoncrysol.2019.119754.Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Synthesis of amide imidazole-based functionalized ionic liquid for separation of Th/Pu
- Measurement of integral cross sections of some neutron induced reactions on rubidium at a TRIGA reactor: comparison with integrated data from evaluated data libraries
- Production and purification of research scale 161Tb using cation-exchange semi-preparative HPLC for radiopharmaceutical applications
- The enhancement of mtrABDEF gene expressions in Shewanella azerbaijanica, through acclimation in high uranium concentrations
- Temporal variation of radon in soil and water in Kosovo
- Investigation of some radiation interaction parameters with aluminum–boron alloys
- Radiation shielding performance of lead-borate glasses with rare-earth oxides: a comparative analysis
Articles in the same Issue
- Frontmatter
- Original Papers
- Synthesis of amide imidazole-based functionalized ionic liquid for separation of Th/Pu
- Measurement of integral cross sections of some neutron induced reactions on rubidium at a TRIGA reactor: comparison with integrated data from evaluated data libraries
- Production and purification of research scale 161Tb using cation-exchange semi-preparative HPLC for radiopharmaceutical applications
- The enhancement of mtrABDEF gene expressions in Shewanella azerbaijanica, through acclimation in high uranium concentrations
- Temporal variation of radon in soil and water in Kosovo
- Investigation of some radiation interaction parameters with aluminum–boron alloys
- Radiation shielding performance of lead-borate glasses with rare-earth oxides: a comparative analysis