Home Gamma radiation shielding performance and physico-chemical properties of poly (vinyl alcohol)/Cd(NO3)2 composite films
Article
Licensed
Unlicensed Requires Authentication

Gamma radiation shielding performance and physico-chemical properties of poly (vinyl alcohol)/Cd(NO3)2 composite films

  • El-Sayed A. Waly EMAIL logo , Omayma A. Ghazy , Magdy Khalil EMAIL logo and Zakaria I. Ali
Published/Copyright: March 17, 2022

Abstract

To improve a radiation shielding performance of the polymer composite, poly (vinyl alcohol) (PVA) was composited with cadmium nitrate. Its radiation shielding capabilities of PVA/Cd(NO3)2 composite films were investigated at three different Cd(NO3)2 concentration levels: 5, 10, and 15% wt. The structural, thermal, and optical properties of the synthesized composite films were examined. The addition of cadmium nitrate to the polymer worsened its thermal stability and improved its optical energy band gap by lowering its direct bandgap energy from 4.56 to 3.25 eV for PVA and PVA/15 wt% Cd(NO3)2 films, respectively. The gamma-ray shielding capacity of the composite was examined using radioactive sources including 241Am (59.5 keV),57Co (122 keV), 192Ir (346 keV) and 137Cs (662 keV). The Micro-Shielding program was used to compare the experimental results of gamma transmittance with theoretical calculations, and the results were found to be in good agreement. Radiation shielding performance of PVA/Cd(NO3)2 composite films was examined by the determination of the linear attenuation coefficient (µ), mass attenuation coefficient (µm), half value layer (HVL) and exposure buildup factor (EBF). The reinforcement of PVA matrix with 15 wt% Cd(NO3)2 supported to increase the radiation shielding capacity by 13.7% for gamma photons of 57Co radioisotope.


Corresponding authors: Magdy Khalil, Hot Laboratories and Waste Management Center, Egyptian Atomic Energy Authority (EAEA), P. No. 13759, Cairo, Egypt, E-mail: ; and El-Sayed A. Waly, Second Research Reactor, Nuclear Research Center, Egyptian Atomic Energy Authority (EAEA). P.O. 11787, Cairo, Egypt; National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt, E-mail:

Acknowledgments

The authors thank all the staff members and colleagues of the Nuclear Fuel Technology Department, Hot Laboratories Centre and Nuclear Research Center of Egyptian Atomic Energy Authority for their cooperation, and useful help offered during this work.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Karmakar, A., Wang, J., Prinzie, J., De Smedt, V., Leroux, P. A review of semiconductor based ionising radiation sensors used in Harsh radiation environments and their applications. Radiation 2021, 1, 194; https://doi.org/10.3390/radiation1030018.Search in Google Scholar

2. Bilici, İ., Aygün, B., Deniz, C. U., Öz, B., Sayyed, M. I., Karabulut, A. Fabrication of novel neutron shielding materials: polypropylene composites containing colemanite, tincal and ulexite. Prog. Nucl. Energy 2021, 141, 103954; https://doi.org/10.1016/j.pnucene.2021.103954.Search in Google Scholar

3. Cvetković, V. M., Öcal, A., Lyamzina, Y., Noji, E. K., Nikolić, N., Milošević, G. Nuclear power risk perception in Serbia: fear of exposure to radiation vs. Social benefits. Energies 2021, 14, 2464.10.3390/en14092464Search in Google Scholar

4. Holmberg, O., Pinak, M. How often does it happen? A review of unintended, unnecessary and unavoidable high-dose radiation exposures. J. Radiol. Prot. 2021, https://orcid.org/0000-0001-6036-2319.10.1088/1361-6498/ac0d64Search in Google Scholar PubMed

5. Domínguez, C. R., Mares, J. I. P., Hernández, R. G. Z. Hazard identification and analysis in work areas within the Manufacturing Sector through the HAZID methodology. Process Saf. Environ. Protect. 2021, 145, 23.10.1016/j.psep.2020.07.049Search in Google Scholar

6. Bijanu, A., Arya, R., Agrawal, V., Tomar, A. S., Gowri, V. S., Sanghi, S. K., Mishra, D., Salammal, S. T. Metal-polymer composites for radiation protection: a review. J. Polym. Res. 2021, 28, 1; https://doi.org/10.1007/s10965-021-02751-3.Search in Google Scholar

7. Arfa, M. M., Sadawy, M. M., Nooman, M. T., Farag, A. T. M., El Shazly, R. M. The influence of heating on mechanical and nuclear properties of reactive powder concrete as a protective shield in nuclear facilities. Prog. Nucl. Energy 2022, 143, 104046; https://doi.org/10.1016/j.pnucene.2021.104046.Search in Google Scholar

8. Okafor, C. E., Okonkwo, U. C., Okokpujie, I. P. Trends in reinforced composite design for ionizing radiation shielding applications: a review. J. Mater. Sci. 2021, 56, 11631; https://doi.org/10.1007/s10853-021-06037-3.Search in Google Scholar

9. Mirji, R., Lobo, B. Study of polycarbonate–bismuth nitrate composite for shielding against gamma radiation. J. Radioanal. Nucl. Chem. 2020, 324, 7; https://doi.org/10.1007/s10967-020-07038-3.Search in Google Scholar

10. Ni, M., Tang, X., Chai, H., Zhang, Y., Chen, T., Chen, D. Preparation and properties of the fast-curing γ-ray-shielding materials based on polyurethane. Nucl. Eng. Technol. 2016, 48, 1396; https://doi.org/10.1016/j.net.2016.06.008.Search in Google Scholar

11. Huang, W., Yang, W., Ma, Q., Wu, J., Fan, J., Zhang, K. Preparation and characterization of γ-ray radiation shielding PbWO4/EPDM composite. J. Radioanal. Nucl. Chem. 2016, 309, 1097; https://doi.org/10.1007/s10967-016-4713-9.Search in Google Scholar

12. Li, R., Gu, Y., Zhang, G., Yang, Z., Li, M., Zhang, Z. Radiation shielding property of structural polymer composite: continuous basalt fiber reinforced epoxy matrix composite containing erbium oxide. Compos. Sci. Technol. 2017, 143, 67; https://doi.org/10.1016/j.compscitech.2017.03.002.Search in Google Scholar

13. Man, Y., Mu, L., Wang, Y., Lin, S., Rempel, G. L., Pan, Q. Synthesis and characterization of rutile titanium dioxide/polyacrylate nanocomposites for applications in ultraviolet light‐shielding materials. Polym. Compos. 2015, 36, 8; https://doi.org/10.1002/pc.22903.Search in Google Scholar

14. Eren Belgin, E., Aycik, G. A., Kalemtas, A., Pelit, A., Dilek, D. A., Kavak, M. T. Usability of natural titanium-iron oxide as filler material for ionizing electromagnetic radiation shielding composites; preparation, characterization and performance. J. Radioanal. Nucl. Chem. 2016, 309, 659.10.1007/s10967-015-4643-ySearch in Google Scholar

15. Al Naim, A., Alnaim, N., Ibrahim, S. S., Metwally, S. M. Effect of gamma irradiation on the mechanical properties of PVC/ZnO polymer nanocomposite. J. Radiat. Res. Appl. Sci. 2017, 10, 165; https://doi.org/10.1016/j.jrras.2017.03.004.Search in Google Scholar

16. Jalali, M., Dauterstedt, S., Michaud, A., Wuthrich, R. Electromagnetic shielding of polymer–matrix composites with metallic nanoparticles. Compos. B Eng. 2011, 42, 1420; https://doi.org/10.1016/j.compositesb.2011.05.018.Search in Google Scholar

17. Afify, T. A., Ghazy, O. A., Saleh, H. H., Ali, Z. I. Efficient in situ synthetic routes of polyaniline/poly (vinyl alcohol)/TiO2 nanocomposites using gamma irradiation. J. Mol. Struct. 2018, 1153, 128; https://doi.org/10.1016/j.molstruc.2017.09.094.Search in Google Scholar

18. Ali, Z. I., Ghazy, O. A., Meligi, G., Saleh, H. H., Bekhit, M. Radiation‐induced synthesis of Copper/Poly (vinyl alcohol) nanocomposites and their catalytic activity. Adv. Polym. Technol. 2018, 37, 365; https://doi.org/10.1002/adv.21675.Search in Google Scholar

19. El-Sharkawy, R. M., Allam, E. A., El-Taher, A., Elsaman, R., Massoud, E. E. S., Mahmoud, M. E. Synergistic effects on gamma-ray shielding by novel light-weight nanocomposite materials of bentonite containing nano Bi2O3 additive. Ceram. Int. 2022, 48, 7291; https://doi.org/10.1016/j.ceramint.2021.11.290.Search in Google Scholar

20. Thongpool, V., Phunpueok, A., Barnthip, N., Jaiyen, S. BaSO4/polyvinyl alcohol composites for radiation shielding. In Applied Mechanics and Materials, Rattikorn Yimnirun; Trans Tech Publ, 2015, https://doi.org/10.4028/www.scientific.net/AMM.804.3.Search in Google Scholar

21. Hager, I. Z., Rammah, Y. S., Othman, H. A., Ibrahim, E. M., Hassan, S. F., Sallam, F. H. Nano-structured natural bentonite clay coated by polyvinyl alcohol polymer for gamma rays attenuation. J. Theor. Appl. Phys. 2019, 13, 141; https://doi.org/10.1007/s40094-019-0332-5.Search in Google Scholar

22. Badawy, S. M., Abd El‐Latif, A. A. Synthesis and characterizations of magnetite nanocomposite films for radiation shielding. Polym. Compos. 2017, 38, 974; https://doi.org/10.1002/pc.23660.Search in Google Scholar

23. Alfahed, R. K. F., Mohammad, K. K., Majeed, M. S., Badran, H. A., Ali, K. M., Kadem, B. Y. Preparation, morphological, and mechanical characterization of titanium dioxide (TiO2)/polyvinyl alcohol (PVA) composite for gamma-rays radiation shielding. J. Phys.: Conf. Ser. 2019, 1279, 30; https://doi.org/10.1088/1742-6596/1279/1/012019.Search in Google Scholar

24. Murty, V. R. K. Effective Atomic Numbers for W/Cu Alloy for Total Photon Attenuation, 2004.10.1016/j.radphyschem.2004.04.046Search in Google Scholar

25. Waly, E.-S. A., Fusco, M. A., Bourham, M. A. Gamma-ray mass attenuation coefficient and half value layer factor of some oxide glass shielding materials. Ann. Nucl. Energy 2016, 96, 26.https://doi.org/10.1016/j.anucene.2016.05.028.Search in Google Scholar

26. Waly, E.-S. A., Bourham, M. A. Comparative study of different concrete composition as gamma-ray shielding materials. Ann. Nucl. Energy 2015, 85, 306; https://doi.org/10.1016/j.anucene.2015.05.011.Search in Google Scholar

27. Vickers, N. J. Animal communication: when i’m calling you, will you answer too? Curr. Biol. 2017, 27, R713; https://doi.org/10.1016/j.cub.2017.05.064.Search in Google Scholar PubMed

28. Urkimbayeva, P. I., Koshkinbayev, Z. B., Abilova, G. K., Kenessova, Z. A., Yessirkepova, A. N., Samenova, N. O., Bekbayeva, L. Development of a methodology for the study of polymer wound coatings for application characteristics. Egypt. J. Chem. 2021, 64, 1957.Search in Google Scholar

29. Kumar, N. b. R., Crasta, V., Praveen, B. M., Kumar, M. Studies on structural, optical and mechanical properties of MWCNTs and ZnO nanoparticles doped PVA nanocomposites. Nanotechnol. Rev. 2015, 4, 457; https://doi.org/10.1515/ntrev-2015-0020.Search in Google Scholar

30. Rithin Kumar, N. B., Crasta, V., Bhajantri, R. F., Praveen, B. M. Microstructural and mechanical studies of PVA doped with ZnO and WO 3 composites films. J. Polym. 2014, 2014, 1; https://doi.org/10.1155/2014/846140.Search in Google Scholar

31. Ceran, Ö. B., Şimşek, B., Uygunoğlu, T., Şara, O. N. PVC concrete composites: comparative study with other polymer concrete in terms of mechanical, thermal and electrical properties. J. Mater. Cycles Waste Manag. 2019, 21, 818; https://doi.org/10.1007/s10163-019-00846-0.Search in Google Scholar

32. Wang, J., Li, Y., Zhu, F., Ming, R., Chen, L.-Q. Genome-wide analysis of nitrate transporter (NRT/NPF) family in sugarcane saccharum spontaneum L. Trop. Plant Biol. 2019, 12, 133; https://doi.org/10.1007/s12042-019-09220-8.Search in Google Scholar

33. Hemalatha, K. S., Parvatikar, N., Rukmani, K. Influence of ZnO nanoparticles on thermal behavior of poly vinyl alcohol films. Int. J. Adv. Sci. Tech. Res. 2014, 5, 106.Search in Google Scholar

34. Betti, N. A. Thermogravimetric analysis on PVA/PVP blend under air atmosphere. Eng. Technol. J. 2016, 34, 2433.10.30684/etj.34.13A.6Search in Google Scholar

35. Wojciechowski, K. T., Małecki, A. Mechanism of thermal decomposition of cadmium nitrate Cd (NO3) 2· 4H2O. Thermochim. Acta 1999, 331, 73; https://doi.org/10.1016/s0040-6031(99)00053-2.Search in Google Scholar

36. Banerjee, M., Jain, A., Mukherjee, G. S. Microstructural and optical properties of polyvinyl alcohol/manganese chloride composite film. Polym. Compos. 2019, 40, E765; https://doi.org/10.1002/pc.25017.Search in Google Scholar

37. Taha, T. A., Abouhaswa, A. S. Preparation and optical properties of borate glass doped with MnO 2. J. Mater. Sci. Mater. Electron. 2018, 29, 8100; https://doi.org/10.1007/s10854-018-8816-7.Search in Google Scholar

38. Alyan, A., Abdel-Samad, S., Massoud, A., Waly, S. A. Characterization and thermal conductivity investigation of Copper-Polyaniline Nano composite synthesized by gamma radiolysis method. Heat Mass Tran. 2019, 55, 2409; https://doi.org/10.1007/s00231-019-02588-z.Search in Google Scholar

39. Shehata, M. M., Abdelreheem, A. M., Waly, S. A., Ashour, A. H. Cu and Ag nanoparticles films deposited on glass substrate using cold cathode ion source. J. Inorg. Organomet. Polym. Mater. 2017, 27, 720; https://doi.org/10.1007/s10904-017-0515-y.Search in Google Scholar

40. Shehap, A. M., Akil, D. S. Structural and optical properties of TiO2 nanoparticles/PVA for different composites thin films. Int. J. Nanoelectron. Mater. 2016, 9, 17.Search in Google Scholar

41. Sayyed, M. I., AlZaatreh, M. Y., Matori, K. A., Sidek, H. A. A., Zaid, M. H. M. Comprehensive study on estimation of gamma-ray exposure buildup factors for smart polymers as a potent application in nuclear industries. Results Phys. 2018, 9, 585; https://doi.org/10.1016/j.rinp.2018.01.057.Search in Google Scholar

42. Dong, M. G., El-Mallawany, R., Sayyed, M. I., Tekin, H. O. Shielding properties of 80TeO2–5TiO2–(15−x) WO3–xAnOm glasses using WinXCom and MCNP5 code. Radiat. Phys. Chem. 2017, 141, 172; https://doi.org/10.1016/j.radphyschem.2017.07.006.Search in Google Scholar

43. Kihel, M., Sahli, S., Zenasni, A., Raynaud, P., Segui, Y. Dielectric properties of SiOx like films deposited from TMS/O2 mixture in low pressure microwave plasma. Vacuum 2014, 107, 264; https://doi.org/10.1016/j.vacuum.2014.02.022.Search in Google Scholar

44. Waly, S. A., Abdelreheem, A. M., Shehata, M. M., Ghazy, O. A., Ali, Z. I. Thermal stability, mechanical properties, and gamma radiation shielding performance of polyvinyl chloride/Pb(NO3)2 composites. J. Polym. Eng. 2021, 41, 737; https://doi.org/10.1515/polyeng-2021-0067.Search in Google Scholar

45. Stabin, M. G. Radiation protection and dosimetry; Springer New York: New York, NY, 2007.Search in Google Scholar

46. Sayyed, M. I., Elhouichet, H. Variation of energy absorption and exposure buildup factors with incident photon energy and penetration depth for boro-tellurite (B2O3-TeO2) glasses. Radiat. Phys. Chem. 2017, 130, 335; https://doi.org/10.1016/j.radphyschem.2016.09.019.Search in Google Scholar

47. Kurudirek, M., Chutithanapanon, N., Laopaiboon, R., Yenchai, C., Bootjomchai, C. Effect of Bi2O3 on gamma ray shielding and structural properties of borosilicate glasses recycled from high pressure sodium lamp glass. J. Alloys Compd. 2018, 745, 355; https://doi.org/10.1016/j.jallcom.2018.02.158.Search in Google Scholar

Received: 2021-06-04
Accepted: 2022-02-24
Published Online: 2022-03-17
Published in Print: 2022-04-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2021-1062/pdf
Scroll to top button