Startseite Unique transport behaviour of Am(III)/Eu(III) ions across a supported liquid membrane containing a TREN-based diglycolamide dendrimer ligand
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Unique transport behaviour of Am(III)/Eu(III) ions across a supported liquid membrane containing a TREN-based diglycolamide dendrimer ligand

  • Bholanath Mahanty , Parveen K. Verma , Prasanta K. Mohapatra EMAIL logo , Andrea Leoncini , Jurriaan Huskens und Willem Verboom EMAIL logo
Veröffentlicht/Copyright: 21. März 2022

Abstract

Appropriately functionalized dendrimers are exotic ligands and are expected to give rise to better extraction/transport results than the corresponding monofunctional ones. Diglycolamide- (DGA) based dendrimers and their transport studies are rarely reported. Transport of Am(III) and Eu(III) was studied across a PTFE- (polytetrafluoroethylene) based flat sheet supported liquid membrane containing a tris(2-aminoethyl)amine (TREN) dendrimer ligand containing six DGA pendent arms (termed as TREN-G1-DGA) in 5% isodecanol modified n-dodecane. The transport results were compared with those of the monofunctional ligand TODGA (N,N,N′,N′-tetra-n-octyl diglycolamide). In case of a 5.75 × 10−4 M TREN-G1-DGA solution, Am(III) transport was slower than that of Eu(III) under identical conditions. In case of TREN-G1-DGA the role of acid on the metal ion transport was less important than that while using TODGA as a carrier. However, a nitric acid medium is much more suitable for metal ion transport than a mixture containing sodium nitrate as the major component. Insight into the extraction and transport of the Eu(III) complexes was obtained from luminescence spectroscopic studies.


Corresponding authors: Prasanta K. Mohapatra, Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India, E-mail: ; and Willem Verboom, Department of Molecules & Materials, Laboratory of Molecular NanoFabrication, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands, E-mail:

Acknowledgement

The authors (BNM, PKV and PKM) thank Dr. P. K. Pujari, Director, Radiochemistry & Isotope Group, BARC, for his constant encouragement and interest in this work.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflict of interest.

References

1. Mathur, J. N., Murali, M. S., Nash, K. L. Actinide partitioning: a review. Solvent Extr. Ion Exch. 2001, 19, 357–390; https://doi.org/10.1081/sei-100103276.Suche in Google Scholar

2. Leoncini, A., Huskens, J., Verboom, W. Ligands for f-element extraction used in the nuclear fuel cycle. Chem. Soc. Rev. 2017, 46, 7229–7273; https://doi.org/10.1039/c7cs00574a.Suche in Google Scholar PubMed

3. Ansari, S. A., Pathak, P. N., Mohapatra, P. K., Manchanda, V. K. Aqueous partitioning of minor actinides by different processes. Separ. Purif. Rev. 2011, 40, 4376; https://doi.org/10.1080/15422119.2010.545466.Suche in Google Scholar

4. Ansari, S. A., Pathak, P. N., Mohapatra, P. K., Manchanda, V. K. Chemistry of diglycolamides: promising extractants for actinide partitioning. Chem. Rev. 2012, 112, 1751–1772; https://doi.org/10.1021/cr200002f.Suche in Google Scholar PubMed

5. Mowafy, E. A., Aly, H. F. Synthesis of some N,N,N′,N′-tetraalkyl-3-oxa-pentane-1,5-diamide and their applications in solvent extraction. Solvent Extr. Ion Exch. 2007, 25, 205–224; https://doi.org/10.1080/07366290601169352.Suche in Google Scholar

6. Magnusson, D., Christiansen, B., Glatz, J.-P., Malmbeck, R., Modolo, G., Serrano-Purroy, D., Sorel, C. Demonstration of a TODGA based extraction process for the partitioning of minor actinides from a PUREX raffinate part III: centrifugal contactor run using genuine fuel solution. Solvent Extr. Ion Exch. 2009, 27, 26–35; https://doi.org/10.1080/07366290802544726.Suche in Google Scholar

7. Ansari, S. A., Prabhu, D. R., Gujar, R. B., Kanekar, A. S., Rajeswari, B., Kulkarni, M. J., Murali, M. S., Babu, Y., Natarajan, V., Rajeswari, S., Suresh, A., Manivannan, R., Antony, M. P., Srinivasan, T. G., Manchanda, V. K. Counter-current extraction of uranium and lanthanides from simulated high-level waste using N,N,N′,N′-tetraoctyl diglycolamide. Separ. Purif. Technol. 2009, 66, 118–124; https://doi.org/10.1016/j.seppur.2008.11.019.Suche in Google Scholar

8. Sasaki, Y., Sugo, Y., Suzuki, S., Tachimori, S. The novel extractants, diglycolamides, for the extraction of lanthanides and actinides in HNO3-n-dodecane system. Solvent Extr. Ion Exch. 2001, 19, 91–103; https://doi.org/10.1081/sei-100001376.Suche in Google Scholar

9. Jensen, M. P., Yaita, T., Chiarizia, R. Reverse-micelle formation in the partitioning of trivalent f-element cations by biphasic systems containing a tetraalkyl diglycolamide. Langmuir 2007, 23, 4765–4774; https://doi.org/10.1021/la0631926.Suche in Google Scholar PubMed

10. Pathak, P. N., Ansari, S. A., Kumar, S., Tomar, B. S., Manchanda, V. K. Dynamic light scattering study on the aggregation behaviour of N,N,N′,N′-tetraoctyl diglycolamide (TODGA) and its correlation with the extraction behavior of metal ions. J. Colloid Interface Sci. 2010, 342, 114–118; https://doi.org/10.1016/j.jcis.2009.10.015.Suche in Google Scholar PubMed

11. Ansari, S. A., Mohapatra, P. K., Prabhu, D. R., Manchanda, V. K. Evaluation of N,N,N′,N′-tetraoctyl-3-oxapentane-diamide (TODGA) as a mobile carrier in remediation of nuclear waste using supported liquid membrane. J. Membr. Sci. 2007, 298, 169–174; https://doi.org/10.1016/j.memsci.2007.04.015.Suche in Google Scholar

12. Panja, S., Mohapatra, P. K., Kandwal, P., Tripathi, S. C., Manchanda, V. K. Pertraction of plutonium in the +4 oxidation state through a supported liquid membrane containing TODGA as the carrier. Desalination 2010, 262, 57–63; https://doi.org/10.1016/j.desal.2010.05.041.Suche in Google Scholar

13. Boyadzhiev, L., Lazarova, Z. Chapter 7: Liquid Membranes. In Membrane Separations Technology: Principles and Applications; Noble, R. D., Stern, S. A., Eds. Elsevier Science, B.V.: Amsterdam, 1995; pp. 283–300.10.1016/S0927-5193(06)80009-4Suche in Google Scholar

14. Kocherginsky, N. M., Yang, Q., Seelam, L. Recent advances in supported liquid membrane technology. Separ. Purif. Technol. 2007, 53, 171–177; https://doi.org/10.1016/j.seppur.2006.06.022.Suche in Google Scholar

15. De Gyves, J., De San Miguel, E. R. Metal ion separations by supported liquid membranes. Ind. Eng. Chem. Res. 1999, 38, 2182–2202; https://doi.org/10.1021/ie980374p.Suche in Google Scholar

16. Ansari, S. A., Mohapatra, P. K., Prabhu, D. R., Manchanda, V. K. Transport of americium(III) through a supported liquid membrane containing N,N,N′,N′-tetraoctyl-3-oxapentane diamide (TODGA) in n-dodecane as the carrier. J. Membr. Sci. 2006, 282, 133–141; https://doi.org/10.1016/j.memsci.2006.05.013.Suche in Google Scholar

17. Iqbal, M., Mohapatra, P. K., Ansari, S. A., Huskens, J., Verboom, W. Preorganization of diglycolamides on the calix[4]arene platform and its effect on the extraction of Am(III)/Eu(III). Tetrahedron 2012, 68, 7840–7847; https://doi.org/10.1016/j.tet.2012.07.036.Suche in Google Scholar

18. Li, C., Wu, L., Chen, L., Yuan, X., Cai, Y., Feng, W., Liu, N., Ren, Y., Sengupta, A., Murali, M. S., Mohapatra, P. K., Tao, G., Zeng, H., Ding, S., Yuan, L. Highly efficient extraction of actinides with pillar[5]arene-derived diglycolamides in ionic liquids via a unique mechanism involving competitive host–guest interactions. Dalton Trans. 2016, 45, 19299–19310; https://doi.org/10.1039/c6dt04229e.Suche in Google Scholar PubMed

19. Leoncini, A., Ansari, S. A., Mohapatra, P. K., Boda, A., Ali, S. M., Sengupta, A., Huskens, J., Verboom, W. Benzene-centered tripodal diglycolamides: synthesis, metal ion extraction, luminescence spectroscopy, and DFT studies. Dalton Trans. 2017, 46, 1431–1438; https://doi.org/10.1039/c6dt04034a.Suche in Google Scholar PubMed

20. Leoncini, A., Ansari, S. A., Mohapatra, P. K., Sengupta, A., Huskens, J., Verboom, W. Diglycolamide-functionalized poly(propylene imine) diaminobutane dendrimers for sequestration of trivalent f-elements: synthesis, extraction and complexation. Dalton Trans. 2017, 46, 501–508; https://doi.org/10.1039/c6dt03648a.Suche in Google Scholar PubMed

21. Bhattacharyya, A., Leoncini, A., Mohapatra, P. K., Verma, P. K., Kanekar, A. S., Yadav, A. K., Jha, S., Bhattacharyya, D., Egberink, R. J. M., Huskens, J., Verboom, W. A diglycolamide-functionalized TREN-based dendrimer with a ‘crab-like’ grip for the complexation of actinides and lanthanides. Dalton Trans. 2018, 47, 15164–15172; https://doi.org/10.1039/c8dt03051k.Suche in Google Scholar

22. Bhattacharyya, A., Leoncini, A., Egberink, R. J. M., Mohapatra, P. K., Verma, P. K., Kanekar, A. S., Yadav, A. K., Nath Jha, S., Bhatacharyya, D., Huskens, J., Verboom, W. First report on the complexation of actinides and lanthanides using 2,2′,2ʺ-(((1,4,7-triazonane-1,4,7-triyl)tris(2-oxoethane-2,1-diyl)) tris(oxy) tris(N,N-dioctylacetamide): synthesis, extraction, luminescence, EXAFS, and DFT studies. Inorg. Chem. 2018, 57, 12987–12998; https://doi.org/10.1021/acs.inorgchem.8b02255.Suche in Google Scholar

23. Sriram, S., Mohapatra, P. K., Pandey, A. K., Manchanda, V. K., Badheka, L. P. Facilitated transport of americium(III) from nitric acid media using dimethyldibutyl-tetradecyl-1,3-malonamide. J. Membr. Sci. 2000, 177, 163–175; https://doi.org/10.1016/s0376-7388(00)00474-9.Suche in Google Scholar

24. Danesi, P. R. Separation of metal species by supported liquid membranes. Separ. Sci. Technol. 1984, 19, 857–894; https://doi.org/10.1080/01496398408068598.Suche in Google Scholar

25. Ansari, S. A., Mohapatra, P. K., Leoncini, A., Ali, S. M., Huskens, J., Verboom, W. Highly efficient N-pivot tripodal diglycolamide ligands for trivalent f-cations: synthesis, extraction, spectroscopy, and density functional theory studies. Inorg. Chem. 2019, 58, 8633–8644; https://doi.org/10.1021/acs.inorgchem.9b00985.Suche in Google Scholar PubMed

26. Bell, K., Geist, A., McLachlan, F., Modolo, G., Taylor, R., Wilden, A. Nitric acid extraction into TODGA. Procedia Chem. 2012, 7, 152–159; https://doi.org/10.1016/j.proche.2012.10.026.Suche in Google Scholar

27. Baes, C. F., Mesmer, R. E. The Hydrolysis of Cations; John Wiley & Sons: New York, 1976.Suche in Google Scholar

28. Martin, T. Influence of 1-Octanol as a Phase Modifier on HEH[EHP] Extraction and Aggregation; Université de Montpellier 2: Ph.D. Thesis, 2014.Suche in Google Scholar

29. Binnemans, K. Interpretation of europium(III) spectra. Coord. Chem. Rev. 2015, 295, 1–45; https://doi.org/10.1016/j.ccr.2015.02.015.Suche in Google Scholar

30. Verma, P. K., Mohapatra, P. K., Yadav, A. K., Jha, S. N., Bhattacharyya, D., Leoncini, A., Huskens, J., Verboom, W. Role of diluent in the unusual extraction of Am3+ and Eu3+ ions with benzene-centered tripodal diglycolamides: local structure studies using luminescence spectroscopy and XAS. New J. Chem. 2021, 45, 16794–16803; https://doi.org/10.1039/d1nj02594e.Suche in Google Scholar

31. Geist, A. Extraction of nitric acid into alcohol: kerosene mixtures. Solvent Extr. Ion Exch. 2010, 28, 596–607; https://doi.org/10.1080/07366299.2010.499286.Suche in Google Scholar

32. Kislik, V. S. In Liquid Membranes Principles and Applications in Chemical Separations & Waste Water Treatment; Kislik, V. S., Ed., Ch. 2, Elsevier: Oxford, 2010; p. 25.Suche in Google Scholar

33. Mohapatra, P. K., Iqbal, M., Raut, D. R., Verboom, W., Huskens, J., Manchanda, V. K. Evaluation of a novel tripodal diglycolamide for actinide extraction: solvent extraction and SLM transport studies. J. Membr. Sci. 2011, 375, 141–149; https://doi.org/10.1016/j.memsci.2011.03.042.Suche in Google Scholar

Received: 2021-11-03
Accepted: 2022-02-24
Published Online: 2022-03-21
Published in Print: 2022-04-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2021-1123/html
Button zum nach oben scrollen