Startseite Experimental and computational study of rafoxanide radioiodination via isotopic exchange reaction
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Experimental and computational study of rafoxanide radioiodination via isotopic exchange reaction

  • Heba Hussien , Sabah I. Khater EMAIL logo und Ahmed M. Rashad
Veröffentlicht/Copyright: 22. Februar 2022

Abstract

The current study is an attempt to confirm the possibility of using rafoxanide (Raf) for diagnostic or radiotherapeutic purpose based on the radioiodine used in the labeling process. The isotopic exchange reaction was performed to radiolabel Raf. The maximum radiochemical yield of [125I]Raf (90%) was obtained when 20 μL of Na[125I]I (7.4 MBq (200 μCi)) in the reaction flask was added to 100 μg of Raf (0.799 mM) within 20 min at 140 °C. High pressure liquid chromatography was used to purify the labeled product of [125I]Raf. The activation energy was calculated experimentally in both ethyl acetate and methanol as reaction medium and found to be 22.82 kJ/mol and 24.43 kJ/mol, respectively. Furthermore, Gaussian 09 used the density function theory (DFT) to calculate the activation energy of the reaction in the two solvents.


Corresponding author: Sabah I. Khater, Cyclotron Project, Nuclear Research Center, Egyptian Atomic Energy Authority (EAEA), P.O. Box 13759, Cairo, Egypt; and Radioactive Isotopes and Generators Department, Hot Lab. Center, Egyptian Atomic Energy Authority (EAEA), P.O. Box 13759, Cairo, Egypt, E-mail:

Acknowledgment

The authors want to give many thanks to the Chemistry Department, Faculty of Science and Arts at Al-rass, Qassim University, KSA. for help and support.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Adam, M. J., Wilbur, D. S. Radiohalogens for imaging and therapy. Chem. Soc. Rev. 2005, 34, 153–163, https://doi.org/10.1039/b313872k.Suche in Google Scholar PubMed

2. Pimlott, S. L., Sutherland, A. Molecular tracers for the PET and SPECT imaging of disease. Chem. Soc. Rev. 2011, 40, 149–162, https://doi.org/10.1039/b922628c.Suche in Google Scholar PubMed

3. Zhu, L., Ploessl, K., Kung, H. F. PET/SPECT imaging agents for neurodegenerative diseases. Chem. Soc. Rev. 2014, 43, 6683–6691, https://doi.org/10.1039/c3cs60430f.Suche in Google Scholar PubMed PubMed Central

4. Seevers, R. H., Counsell, R. E. Radioiodination techniques for small organic molecules. Chem. Rev. 1982, 82, 575–590, https://doi.org/10.1021/cr00052a002.Suche in Google Scholar

5. Wager, K. M., Jones, G. B. Radio-iodination methods for the production of SPECT imaging agents. Curr. Rad. 2010, 3, 37–45, https://doi.org/10.2174/1874471011003010037.Suche in Google Scholar

6. Mushtaq, S., Jeon, J., Shaheen, A., Jang, B. S., Park, S. H. Critical analysis of radioiodination techniques for micro and macro organic molecules. J. Radioanal. Nucl. Chem. 2016, 309, 859–889, https://doi.org/10.1007/s10967-015-4679-z.Suche in Google Scholar

7. Mohammed-Ali, N. A. K., Boga, N. J. A. The pharmacodynamics of the flukicidal salicylanilides, rafoxanide, closantel and oxyclosanide. J. Vet. Pharmacol. Therapeut. 1987, 10, 127–133, https://doi.org/10.1111/j.1365-2885.1987.tb00089.x.Suche in Google Scholar PubMed

8. Liu, J. Z., Hu, Y. L., Feng, Y., Guo, Y. B., Liu, Y. F., Yang, J. L., Mao, Q. S., Xue, W. J. Rafoxanide promotes apoptosis and autophagy of gastric cancer cells by suppressing PI3K/Akt/mTOR pathway. Exp. Cell Res. 2019, 385, 111691, https://doi.org/10.1016/j.yexcr.2019.111691.Suche in Google Scholar PubMed

9. Shi, X., Li, H., Shi, A., Yao, H., Ke, K., Dong, C., Zhu, Y., Qin, Y., Ding, Y., He, Y. H., Liu, X., Li, L., Lei, L., Hai, Q., Chen, W., Leung, K. S., Wong, M. H., Kung, H. F., Lin, M. C. Discovery of rafoxanide as a dual CDK4/6 inhibitor for the treatment of skin cancer. Oncol. Rep. 2018, 40, 1592–1600, https://doi.org/10.3892/or.2018.6533.Suche in Google Scholar PubMed

10. Xiao, W., Xu, Z., Chang, S., Li, B., Yu, D., Wu, H., Xie, Y., Wang, Y., Xie, B., Sun, X., Kong, Y., Lan, X., Bu, W., Chen, G., Gao, L., Wu, X., Shi, J., Zhu, W. Rafoxanide, an organohalogen drug, triggers apoptosis and cell cycle arrest in multiple myeloma by enhancing DNA damage responses and suppressing the p38 MAPK pathway. Cancer Lett. 2019, 1, 45–59, https://doi.org/10.1016/j.canlet.2018.12.014.Suche in Google Scholar PubMed

11. He, W., Xu, Z., Song, D., Zhang, H., Li, B., Gao, L., Zhang, Y., Feng, Q., Yu, D., Hu, L., Chen, G., Tao, Y., Wu, X., Shi, J., Zhu, W. Antitumor effects of rafoxanide in diffuse large B cell lymphoma via the PTEN/PI3K/Akt and JNK/c-Jun pathways. Life Sci. 2020, 15, 117249, https://doi.org/10.1016/j.lfs.2019.117249.Suche in Google Scholar PubMed

12. Laudisi, F., Di Grazia, A., De Simone, V., Cherubini, F., Colantoni, A., Ortenzi, A., Franzè, E., Dinallo, V., Di Fusco, D., Monteleone, I., Fearon, E. R., Monteleone, G., Stolfi, C. Induction of endoplasmic reticulum stress and inhibition of colon carcinogenesis by the anti-helmintic drug rafoxanide. Cancer Lett. 2019, 10, 1–11, https://doi.org/10.1016/j.canlet.2019.07.014.Suche in Google Scholar PubMed

13. Di Grazia, A., Laudisi, F., Di Fusco, D., Franzè, E., Ortenzi, A., Monteleone, I., Monteleone, G., Stolfi, C. Rafoxanide induces immunogenic death of colorectal cancer cells. Cancers 2020, 12, 1314, https://doi.org/10.3390/cancers12051314.Suche in Google Scholar PubMed PubMed Central

14. Abdel-Mottaleb, Y., Abdel-Mottaleb, M. S. A. Molecular modeling studies of some uracil and new deoxyuridine derivatives. J. Chem. 2016, 2016, 1–12; https://doi.org/10.1155/2016/5134732.Suche in Google Scholar

15. Rashad, A. M., Mahmoud, M. S., El-desawy, M. FTIR and UV spectroscopic analysis of sparfloxacin combined with theoretical study based on DFT calculations. Arab J. Nucl. Sci. Appl. 2021, 54, 51–65, https://doi.org/10.21608/ajnsa.2020.25609.1335.Suche in Google Scholar

16. Khater, S. I., El-Sharawy, D. M., El Refay, M. S., Farrag, N. S. Optimization and tissue distribution of [125I] iododomperidone as a radiotracer for D2-receptor imaging. J. Radioanal. Nucl. Chem. 2020, 325, 343–355, https://doi.org/10.1007/s10967-020-07236-z.Suche in Google Scholar

17. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A.Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J. Gaussian 09, Revision B.01; Gaussian, Inc.: Wallingford, CT, 2009.Suche in Google Scholar

18. Dennington, R., Keith, T., Millam, J. GaussView, Version 5.0.8; Semichem Inc.: Shawnee Mission KS, 2009.Suche in Google Scholar

19. Nassar, M. W. I., Attia, k. A. M., Mohamad, A. A. A., Said, R. A. M., Gaber, R. F. A. Validated stability– indicating HPLC method for determination of rafoxanide in pure form and pharmaceutical formulation. Eur. J. Biomed. Pharmaceut. Sci. 2018, 5, 01–08.Suche in Google Scholar

20. Argentini, M., Zahner, M., Schubiger, P. A. Comparison of several methods for the synthesis of ω-iodine-123-heptadecanoicacid. J. Radioanal. Nucl. Chem. 1981, 65, 131–138, https://doi.org/10.1007/bf02516096.Suche in Google Scholar

21. El-Wetery, S., El-Azoney, Kh. M., El-Ghany, E. A., El-Mohty, A. A., Deeb, A. Preparation of 1-phenyl 3-methyl 4-nitro 5-125I-pyrazole (5-125I-MNPP) as a possible cannabinoid receptor imaging agent. J. Radioanal. Nucl. Chem. 2001, 250, 335–345, https://doi.org/10.1023/a:1017964116669.10.1023/A:1017964116669Suche in Google Scholar

22. Reichardt, C. Solvent Effects in Organic Chemistry; Verlag Chemie: Weinheim, New York, 1978.Suche in Google Scholar

23. El-Wetery, A. S., El-Mohty, A. A., El-Azoney, Kh. M. Preparation of no-carrier added 16-131I-hexadecanoic acid via halogen exchange: comparison between two methods. J. Radioanal. Nucl. Chem. 1997, 222, 133–140, https://doi.org/10.1007/bf02034259.Suche in Google Scholar

24. Norman, R. O. C. Principles of Organic Synthesis, 2nd ed.; Chapman and Hall London, Halsted Press John Wiley and Sons: New York, 1978.10.1007/978-1-4899-3021-7Suche in Google Scholar

25. El-Azony, K. M., El-Mohty, A. A., Deeb, A., Khater, S. I. Radioiodination of 3-iodo-4,5-diphenyl-1H-pyrazolo[3,4-c]pyridazine via isotopic exchange reaction. Radiochim. Acta 2010, 98, 167–173, https://doi.org/10.1524/ract.2010.1700.Suche in Google Scholar

26. Coenen, H. H., Mertens, J., Mazière, B. Radioiodination Reactions for Radiopharmaceuticals; Springer: The Netherlands, 2006; pp. 17–28.10.1007/1-4020-4561-1_3Suche in Google Scholar

27. Coenen, H. H., Moerlein, S. M., Stöcklin, G. No-carrier-added radiohalogenation methods with heavy halogens. Radiochim. Acta 1983, 34, 47–68, https://doi.org/10.1524/ract.1983.34.12.47.Suche in Google Scholar

Received: 2022-01-08
Revised: 2022-02-06
Accepted: 2022-02-07
Published Online: 2022-02-22
Published in Print: 2022-04-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2022-0009/html
Button zum nach oben scrollen