Home Mathematics A new categorical equivalence for stone algebras
Article
Licensed
Unlicensed Requires Authentication

A new categorical equivalence for stone algebras

  • Ismael Calomino EMAIL logo and Gustavo Pelaitay
Published/Copyright: December 12, 2025
Become an author with De Gruyter Brill

Abstract

The aim of this paper is to give a categorical equivalence for Stone algebras. We introduce the variety of Stone-Kleene algebras with intuitionistic negation, or Stone KAN-algebras for short, and explore Kalman’s construction for Stone algebras. We examine the centered algebras within this new variety and prove that the category of Stone algebras is equivalent to the category of centered Stone KAN-algebras. Moreover, inspired by Monteiro’s construction for Nelson algebras, we propose a method to construct a centered Stone KAN-algebra from a given Stone KAN-algebra and show the connection between Kalman’s construction and Monteiro’s construction.

MSC 2010: Primary 06D15; 03G25
  1. (Communicated by Roberto Giuntini)

References

[1] Balbes, R.—Dwinger, P.: Distributive Lattices, University of Missouri Press, Columbia, 1974.Search in Google Scholar

[2] Brignole, D.: Equational characterization of Nelson Algebras, Notre Dame J. Formal Logic 10 (1969), 285–297.10.1305/ndjfl/1093893718Search in Google Scholar

[3] Brignole, D.—Monteiro, A.: Caractrisation des algèbres de Nelson par des ègalitès. I, II, Proc. Japan Acad. 43 (1967), 284–285.10.3792/pja/1195521625Search in Google Scholar

[4] Celani, S. A.: Classical modal De Morgan algebras, Stud. Log. 98 (2011), 251–266.10.1007/s11225-011-9328-0Search in Google Scholar

[5] Chen, L.—Shi, N.—Wu, G.: Definable sets in Stone algebras, Arch. Math. Logic 55 (2016), 749–757.10.1007/s00153-016-0491-xSearch in Google Scholar

[6] Chen, C. C.—Grätzer, G.: Stone lattices. I: Construction theorems, Canad. J. Math. 21 (1969), 884–894.10.4153/CJM-1969-096-5Search in Google Scholar

[7] Chen, C. C.—Grätzer, G.: Stone lattices. II: Structure theorems, Canad. J. Math. 21 (1969), 895–903.10.4153/CJM-1969-097-2Search in Google Scholar

[8] Cignoli, R.: The class of Kleene algebras satisfying an interpolation property and Nelson algebras, Algebra Universalis 23 (1986), 262–292.10.1007/BF01230621Search in Google Scholar

[9] Düntsch, I.: A logic for rough sets, Theor. Comput. Sci. 179 (1997), 427–436.10.1016/S0304-3975(96)00334-9Search in Google Scholar

[10] Fidel, M. M.: An algebraic study of a propositional system of Nelson, Math. Logic, Proc. 1st Braz. Conf., Campinas 1977, Lect. Notes Pure Appl. Math. 39 (1978), 99–117.Search in Google Scholar

[11] Gehrke, M.—Walker, E.: On the structure of rough sets, Bull. Pol. Acad. Sci. Math. 40 (1992), 235–245.Search in Google Scholar

[12] Gomez, C.—Marcos, M.—San Martín, H. J.: On the relation of negations in Nelson algebras, Rep. Math. Logic 56 (2021), 15–56.10.4467/20842589RM.21.002.14374Search in Google Scholar

[13] Grätzer, G.: Lattice Theory: Foundation, Birkhäuser Springer Basel, Basel, 2011.10.1007/978-3-0348-0018-1Search in Google Scholar

[14] Grätzer, G.—Schmidt, E. T.: On a problem of M. H. Stone, Acta Math. Acad. Sci. Hung. 8 (1957), 455–460.10.1007/BF02020328Search in Google Scholar

[15] Gregori, V.: Discrete duality for De Morgan algebras with operators, Asian-Eur. J. Math. 12 (2019), Art. ID 1950010.10.1142/S1793557119500104Search in Google Scholar

[16] Järvinen, J.—Radeleczki, S.: Monteiro spaces and rough sets determined by quasiorder relations: models for Nelson algebras, Fund. Inform. 131 (2014), 205–215.10.3233/FI-2014-1010Search in Google Scholar

[17] Kalman, J. A.: Lattices with involution, Trans. Amer. Math. Soc. 87 (1958), 485–491.10.1090/S0002-9947-1958-0095135-XSearch in Google Scholar

[18] Katriňák, T.: A new proof of the construction theorem for Stone algebras, Proc. Amer. Math. Soc. 40 (1973), 75–78.10.1090/S0002-9939-1973-0316335-0Search in Google Scholar

[19] Katriňák, T.—Žabka, M.: A weak Boolean representation of double Stone algebras, Houston J. Math. 30 (2004), 615–628.Search in Google Scholar

[20] Kumar, A.—Gaur, N.—Dewan, B.: A 4-valued logic for double Stone algebras, Int. J. Approx. Reasoning 176 (2024), Art. ID 109309.10.1016/j.ijar.2024.109309Search in Google Scholar

[21] Pelaitay, G.—Starobinsky, M.: A categorical equivalence for tense pseudocomplemented distributive lattices, J. Appl. Log. 11 (2024), 237–251.Search in Google Scholar

[22] Pomykała, J.—Pomykała, J. A.: The Stone algebra of rough sets, Bull. Pol. Acad. Sci. Math. 36 (1988), 495–508.Search in Google Scholar

[23] Rasiowa, H.: N-lattices and constructive logic with strong negation, Fund. Math. 46 (1958), 61–80.10.4064/fm-46-1-61-80Search in Google Scholar

[24] Sendlewski, A.: Nelson algebras through Heyting ones. I, Stud. Log. 49 (1990), 105–126.10.1007/BF00401557Search in Google Scholar

[25] Sendlewski, A.: Topologicality of Kleene algebras with a weak pseudocomplementation over distributive p-algebras, Rep. Math. Logic 25 (1991), 13–56.Search in Google Scholar

[26] Sholander, M.: Postulates for distributive lattices, Canad. J. Math. 3 (1951), 28–30.10.4153/CJM-1951-003-5Search in Google Scholar

[27] Vakarelov, D.: Notes on N-lattices and constructive logic with strong negation, Stud. Log. 36 (1977), 109–125.10.1007/BF02121118Search in Google Scholar

[28] Walker, E.A.: Stone algebras, conditional events, and three-valued logic, IEEE Trans. Syst. Man Cybern. 24 (1994), 1699–1707.10.1109/21.328927Search in Google Scholar

Received: 2025-02-02
Accepted: 2025-07-21
Published Online: 2025-12-12
Published in Print: 2025-12-17

© 2025 Mathematical Institute Slovak Academy of Sciences

Articles in the same Issue

  1. A new categorical equivalence for stone algebras
  2. On special classes of prime filters in BL-algebras
  3. A note on characterized and statistically characterized subgroups of 𝕋 = ℝ/ℤ
  4. New Young-type integral inequalities using composition schemes
  5. The structure of pseudo-n-uninorms with continuous underlying functions
  6. Jensen-type inequalities for a second-order differential inequality condition
  7. A direct proof of the characterization of the convexity of the discrete Choquet integral
  8. Envelope of plurifinely plurisubharmonic functions and complex Monge-Ampère type equation
  9. Fekete-Szegö inequalities for Φ-parametric and β-spirllike mappings of complex order in ℂn
  10. Entire function sharing two values partially with its derivative and a conjecture of Li and Yang
  11. Oscillatory properties of third-order semi-canonical dynamic equations on time scales via canonical transformation
  12. Weighted B-summability and positive linear operators
  13. Some properties and applications of convolution algebras
  14. On measures of σ-noncompactess in F-spaces
  15. On the kolmogorov–feller–gut weak law of large numbers for triangular arrays of rowwise and pairwise negatively dependent random variables
  16. Intermediately trimmed sums of oppenheim expansions: A strong law
  17. Novel weighted distribution: Properties, applications and web-tool
  18. On the q-Gamma distribution: Properties and inference
  19. Finiteorthoatomistic effect algebras and regular algebraic E-test spaces
  20. Prof. RNDr. Anatolij Dvurečenskij, DrSc. 75th anniversary
Downloaded on 6.2.2026 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2025-0093/html
Scroll to top button