Home Mathematics Fekete-Szegö inequalities for Φ-parametric and β-spirllike mappings of complex order in ℂn
Article
Licensed
Unlicensed Requires Authentication

Fekete-Szegö inequalities for Φ-parametric and β-spirllike mappings of complex order in ℂn

  • Liangpeng Xiong EMAIL logo , Fang Yu and Tao Xie
Published/Copyright: December 12, 2025
Become an author with De Gruyter Brill

Abstract

In this paper, we establish the sharp Fekete-Szegö inequalities of functional type over a new class of holomorphic mappings on the unit disk in a complex plane. This class includes some significant widely studied classes. Further, we develop an method to extend our result to higher dimensions. The main theorems of this paper provide a generalization of the Fekete-Szegö coefficients problems for some known classes.

Funding statement: This work was supported by the National Natural Science Foundation of China (No.12061035), Jiangxi Provincial Natural Science Foundation (No.20252BAC240185) and Research Foundation of Jiangxi Science and Technology Normal University of China (No.2021QNBJRC003).

  1. (Communicated by Marek Balcerzak)

References

[1] Długosz, R.—Liczberski, P.: Some results of Fekete-Szegö type for Bavrin's families of holomorphic functions in ℂn Ann. Mat. Pura Appl. 200(4) (2021), 1841–1857.10.1007/s10231-021-01094-6Search in Google Scholar

[2] Długosz, R.—Liczberski, P.: Fekete-Szegö problem for Bavrin's functions and close-to-starlike mappings in ℂn, Anal. Math. Phys. 12(4) (2022), Art. No. 103.10.1007/s13324-022-00714-5Search in Google Scholar

[3] Długosz, R.—Liczberski, P.: Relations among starlikeness, convexity and k-fold symmetry of locally biholomorphic mappings in ℂn J. Math. Anal. Appl. 450 (2017), 169–179.10.1016/j.jmaa.2017.01.020Search in Google Scholar

[4] Elin, M.—Jacobzon, F.: Note on the Fekete-Szegö problem for spirallike mappings in Banach spaces, Results Math. 77 (2022), Art. No. 137.10.1007/s00025-022-01672-xSearch in Google Scholar

[5] Elin, M.—Jacobzon, F.: The Fekete-Szegö problem for spirallike mappings and non-linear resolvents in Banach spaces, Stud. Univ. Babeş-Bolyai Math. 67 (2022), 329–344.10.24193/subbmath.2022.2.09Search in Google Scholar

[6] Fekete, M.—Szegö, G.: Eine Bemerkunguber ungerade schlichte Funktionen, J. Lond. Math. Soc. 8 (1933), 85–89.10.1112/jlms/s1-8.2.85Search in Google Scholar

[7] Gong, S.: The Bieberbach Conjecture, Amer. Math. Soc. International Press, Providence, 1999.10.1090/amsip/012Search in Google Scholar

[8] Graham, I.—Kohr, G.: Geometric Function Theory in One and Higher Dimensions, Marcel Dekker Inc. New York, Basel Switzerland, 2003.10.1201/9780203911624Search in Google Scholar

[9] Hamada, H.—Kohr, G.—Kohr, M.: Fekete-Szegö problem for univalent mappings in one and higher dimensions, J. Math. Anal. Appl. 516(2) (2022), Art. ID 126526.10.1016/j.jmaa.2022.126526Search in Google Scholar

[10] Hamada, H.: Fekete-Szegö problem for spirallike mappings and close-to-quasi-convex mappings on the unit ball of a complex Banach space, Results Math. 78 (2023), Art. No. 109.10.1007/s00025-023-01895-6Search in Google Scholar

[11] Hamada, H.—Kohr, G.: Support points for families of univalent mappings on bounded symmetric domains, Sci. China Math. 12(63) (2020), 2379–2398.10.1007/s11425-019-1632-1Search in Google Scholar

[12] Hamada, H.—Kohr, G.—Kohr, M.: Coefficient Inequalities for Biholomorphic Mappings on the Unit Ball of a Complex Banach Space, Mathematics 10 (2022), Art ID 4832.10.3390/math10244832Search in Google Scholar

[13] Koepf, W.: On the Fekete-Szegö problem for close-to-convex functions, Proc. Amer. Math. Soc. 101 (1987), 89–95.10.1090/S0002-9939-1987-0897076-8Search in Google Scholar

[14] Kanas, S.: An unified approach to the Fekete-Szegö problem, Appl. Math. Comput. 218 (2012), 8453–8461.10.1016/j.amc.2012.01.070Search in Google Scholar

[15] Liczberski, P.: On the subordination of holomorphic mappings in ℂn Demonstratio Math. 19 (1986), 293–301.10.1515/dema-1986-0204Search in Google Scholar

[16] Liu, M. S.—Wu, F.: Sharp inequalities of homogeneous expansions of almost starlike mappings of order alpha, Bull. Malays Math. Sci. Soc. 42 (2019), 133–151.10.1007/s40840-017-0472-1Search in Google Scholar

[17] Liu, X. S.—Liu, T. S.—Xu, Q. H.: A proof of a weak version of the Bieberbach conjecture in several complex variables, Sci. China Math. 58 (2015), 2531–2540.10.1007/s11425-015-5016-2Search in Google Scholar

[18] Liu, T. S.—Xu, Q. H.: Fekete and Szegö inequality for a subclass of starlike mappings of order α on the bounded starlike circular domain in ℂn, Acta. Math. Sci. 37B (2017), 722–731.10.1016/S0252-9602(17)30033-4Search in Google Scholar

[19] Pfaltzgraf, J. A.—Suffridge, T. J.: An extension theorem and linear invariant families generated by starlike maps, Ann. Univ. Mariae Curie-Sklodowska, Sect. A. 53 (1999), 193–207.Search in Google Scholar

[20] Tu, Z. H.—Xiong, L. P.: Unified solution of Fekete and Szegö problem for subclasses of starlike mappings in several complex variables, Math. Slovaca 69(4) (2019), 843–856.10.1515/ms-2017-0273Search in Google Scholar

[21] Xiong, L. P.—Xiong, J. Z.—Zhang, R. Y.: Some results of quasi-convex mappings which have a Φ-parametric representation in higher dimensions, Anal. Math. Phys. 14(3) (2024), Art. No. 68.10.1007/s13324-024-00930-1Search in Google Scholar

[22] Xiong, L. P.—Wang, Y. Q.—Zhang, R. Y.: Coefficient bounds for class of g-starlike mappings of complex order γ in ℂn, Complex Var. Elliptic Equ. 69(8) (2024), 1270–1280.10.1080/17476933.2023.2209729Search in Google Scholar

[23] Xiong, L. P.—Sima, X. Y.—Ouyang, D. L.: Bounds of all terms of homogeneous expansions for a subclass of g-parametric biholomorphic mappings in ℂn, Anal. Math. Phys. 13(2) (2023), Art. No. 34.10.1007/s13324-023-00797-8Search in Google Scholar

[24] Xiong, L.P.—Feng, X.D.—Zhang, J.L.: Fekete-Szegö inequality for generalized subclasses of univalent functions, J. Math. Inequal. 8(3) (2014), 643–659.10.7153/jmi-08-47Search in Google Scholar

[25] Xu, Q. H.—Liu, T. S.: On the Fekete and Szegö problem for the class of starlike mappings in several complex variables, Abstr. Appl. Anal. 2014 (2014), Art. ID 807026.10.1155/2014/807026Search in Google Scholar

[26] Xu, Q. H.: Fekete and Szegö inequalities for a class of holomorphic mappings, Bull. Malays Math. Sci. Soc. 47 (2024), Art. No. 83.10.1007/s40840-024-01677-5Search in Google Scholar

[27] Xu, Q. H.—Feng, W. H.—Liu, T. S.: Some refinements of the Fekete and Szegö inequality on bounded starlike circular domains in ℂn, Comput. Methods Funct. Theory 21(3) (2021), 399–412.10.1007/s40315-020-00353-6Search in Google Scholar

[28] Xu, Q. H.: A refinement of the coefficient inequalities for a subclass of starlike mappings in several complex variables, Results Math. 74 (2019), Art. No. 15610.1007/s00025-019-1080-1Search in Google Scholar

[29] Zhang, R. Y.—Ouyang, D. L.—Xiong, L. P.: Coefficient problems of quasi-convex mappings of Type B on the unit ball in complex Banach spaces, Math. Slovaca 73(5) (2023), 1207–1216.10.1515/ms-2023-0089Search in Google Scholar

Received: 2025-03-02
Accepted: 2025-06-22
Published Online: 2025-12-12
Published in Print: 2025-12-17

© 2025 Mathematical Institute Slovak Academy of Sciences

Articles in the same Issue

  1. A new categorical equivalence for stone algebras
  2. On special classes of prime filters in BL-algebras
  3. A note on characterized and statistically characterized subgroups of 𝕋 = ℝ/ℤ
  4. New Young-type integral inequalities using composition schemes
  5. The structure of pseudo-n-uninorms with continuous underlying functions
  6. Jensen-type inequalities for a second-order differential inequality condition
  7. A direct proof of the characterization of the convexity of the discrete Choquet integral
  8. Envelope of plurifinely plurisubharmonic functions and complex Monge-Ampère type equation
  9. Fekete-Szegö inequalities for Φ-parametric and β-spirllike mappings of complex order in ℂn
  10. Entire function sharing two values partially with its derivative and a conjecture of Li and Yang
  11. Oscillatory properties of third-order semi-canonical dynamic equations on time scales via canonical transformation
  12. Weighted B-summability and positive linear operators
  13. Some properties and applications of convolution algebras
  14. On measures of σ-noncompactess in F-spaces
  15. On the kolmogorov–feller–gut weak law of large numbers for triangular arrays of rowwise and pairwise negatively dependent random variables
  16. Intermediately trimmed sums of oppenheim expansions: A strong law
  17. Novel weighted distribution: Properties, applications and web-tool
  18. On the q-Gamma distribution: Properties and inference
  19. Finiteorthoatomistic effect algebras and regular algebraic E-test spaces
  20. Prof. RNDr. Anatolij Dvurečenskij, DrSc. 75th anniversary
Downloaded on 5.2.2026 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2025-0102/html
Scroll to top button