Home Mark Ups and Pass-Through in Small and Medium Retailers for Rice, Tomato Sauce and Oil
Article
Licensed
Unlicensed Requires Authentication

Mark Ups and Pass-Through in Small and Medium Retailers for Rice, Tomato Sauce and Oil

  • Pablo Blanchard ORCID logo EMAIL logo
Published/Copyright: May 21, 2024

Abstract

In this paper, we recover and decompose markups, and estimate the pass-through rates from cost to prices in small and medium retail stores for oil, tomato sauce, and rice in Uruguay using a structural model of demand and assumptions about the competitive behavior of producers. The market power for these products has been under study by the Commission of Promotion and Defense of Competition since 2016, and the proposed methodology allows for a deeper exploration of the measurement and understanding of the origin of that market power. In addition to providing a fundamental input for competition defense policies in Uruguay, this study enhances the international academic literature by contributing evidence on cost-to-price pass-through in a developing economy with potentially greater market power than that found in developed countries. About 65 % of the market power under the Nash Bertrand assumption is explained by the ability of firms to differentiate products and 35 % by the ownership structure in the case of oil and sauce. In the case of rice, 49 % is explained by differentiation and 51 % for ownership structure. Finally, the pass-through rates are low for the three products, being under both behavioral assumptions lower than 55 % for the three products.

JEL Classification: D43; L11; L81

Corresponding author: Pablo Blanchard, Universidad de la República Uruguay, Montevideo, 11200, Uruguay, E-mail:

Appendix A

See Table A.2.

Table A.1:

Descriptive statistics of demographics.

Departamento Localidad Municipio Age Education years Sex
Artigas Artigas 45.91 8.684 0.455
Artigas Bella Union 44.76 8.305 0.507
Canelones Barros Blancos 43.29 7.678 0.478
Canelones Canelones 46.06 8.961 0.464
Canelones La Paz 44.92 8.688 0.454
Canelones Las Piedras 43.92 8.214 0.443
Canelones Pando 43.90 8.575 0.480
Canelones Parque Del Plata 47.59 9.508 0.447
Canelones Paso Carrasco 43.04 8.821 0.487
Canelones Pinar 43.67 10.46 0.491
Canelones Progreso 43.56 7.864 0.480
Canelones Salinas 46.75 9.780 0.468
Canelones San Ramon 46.75 7.972 0.499
Canelones Santa Lucia 46.43 8.699 0.474
Canelones Sauce 45.54 8.363 0.469
Canelones Solymar 46.04 10.93 0.466
Canelones Toledo 42.67 8.001 0.471
Cerro Largo Melo 46.87 8.392 0.442
Colonia Carmelo 47.23 8.436 0.466
Colonia Colonia 46.64 9.127 0.454
Durazno Durazno 46.22 8.534 0.465
Flores Trinidad 48.69 8.035 0.500
Florida Florida 47.19 8.720 0.453
Lavalleja Minas 48.57 8.523 0.450
Maldonado Maldonado 44.67 8.553 0.468
Maldonado Piriapolis 48.53 9.397 0.470
Maldonado Punta Del Este 47.46 11.98 0.465
Maldonado San Carlos 44.03 8.524 0.457
Montevideo Montevideo A 45.83 8.123 0.454
Montevideo Montevideo B 43.90 12.21 0.449
Montevideo Montevideo C 47.37 11.01 0.451
Montevideo Montevideo CH 48.02 13.07 0.437
Montevideo Montevideo D 45.32 8.490 0.444
Montevideo Montevideo E 47.31 11.62 0.486
Montevideo Montevideo F 44.06 8.211 0.471
Montevideo Montevideo G 46.38 8.897 0.424
Paysandu Paysandu 46.62 9.071 0.472
Rio Negro Fray Bentos 45.36 8.844 0.481
Rio Negro Young 44.51 7.978 0.529
Rivera Rivera 45.52 8.432 0.433
Rocha Rocha 46.88 8.710 0.456
Salto Salto 44.77 8.739 0.467
San Jose Ciudad Del Plata 41.76 7.740 0.468
San Jose Libertad 45.09 7.983 0.470
San Jose San Jose De Mayo 46.42 8.555 0.484
Soriano Dolores 45.12 8.309 0.476
Soriano Mercedes 46.46 8.997 0.457
Tacuarembo Paso De Los Toros 46.97 7.785 0.468
Tacuarembo Tacuarembo 45.53 8.298 0.436
Treinta Y Tres Treinta Y Tres 47.46 8.862 0.474
  1. Notes. Average age, education years and sex by region, obtained from Census 2011.

Table A.2:

First stage logit model.

(1) (2) (3)
Variables Price Price Price
1 instrument 0.445 −1.358** −0.925
(1.659) (0.617) (0.757)
2 instrument 4.180** −0.472 0.184
(1.954) (0.916) (0.870)
3 instrument −2.835 −2.300** −0.924
(2.281) (1.119) (0.854)
4 instrument −0.242 −2.603** −0.131
(2.109) (1.053) (0.833)
5 instrument 5.547*** 0.126 −0.982
(1.748) (0.988) (0.799)
6 instrument −0.337 −4.553*** −1.382*
(1.753) (1.020) (0.740)
7 instrument 1.671 4.101*** −1.207
(1.655) (1.354) (0.783)
8 instrument −2.049 −2.596** 1.204
(1.556) (1.193) (0.985)
9 instrument −0.717 −4.024*** 0.477
(1.540) (1.105) (1.086)
10 instrument 0.024 −1.671 −1.187
(1.494) (1.240) (1.006)
11 instrument −4.362* −0.551 −5.691***
(2.639) (1.334) (1.012)
12 instrument 3.932 −2.726** 1.724*
(2.394) (1.285) (0.984)
13 instrument 4.796* 0.689 −2.821***
(2.723) (1.047) (0.819)
14 instrument −6.215** −9.480*** 3.870***
(2.700) (1.214) (0.762)
15 instrument −9.771*** 0.672 −1.565*
(3.138) (1.244) (0.893)
16 instrument 6.969* −3.335*** −1.694*
(3.675) (1.039) (0.969)
17 instrument −4.161 −0.796 −1.092
(3.364) (0.986) (0.930)
18 instrument 8.269*** −5.024*** −1.944**
(3.007) (1.105) (0.982)
19 instrument −7.032** −0.798 3.950***
(2.856) (1.169) (0.977)
20 instrument 3.507 −1.116 −1.770*
(2.396) (1.235) (1.050)
21 instrument −3.059* −1.131 −3.549***
(1.613) (1.374) (0.822)
22 instrument −4.876** −1.477 −2.410***
(2.288) (1.218) (0.665)
Observations 2751 3360 3525
R-squared 0.826 0.926 0.937
Product Oil Sauce Rice
  1. Notes. First stage of IV regressions reported in Table 3. For hypothesis testing we use p-values with significance levels: ***p < 0.01, **p < 0.05, *p < 0.1.

Table A.3:

Margins by product for oil.

Single product Current ownership Collusion
Condesa soja 22.2 36.4 55.8
Diez soja 12.8 12.8 23.3
Demas soja 98.1 98.1 192.5
Optimo canola 8.4 32.3 49.7
Optimo girasol 10.6 24.3 36.0
Optimo girasol altoleico −22.6 −8.8 1.2
Revelacion soja 12.1 12.1 57.2
Rio de la plata soja 11.3 11.3 51.2
Uruguay girasol 11.4 27.5 42.5
  1. Notes. Presented are means of the brand-locality-quarter observations, weighted by the sales. Margins are defined as (pmc)/p. Margins computed based on the full model reported on Table 4.

Table A.4:

Margins by product for sauce.

Single product Current ownership Collusion
Cololo 6.0 6.0 37.5
Conaprole 9.2 9.2 31.3
De Ley 24.9 35.8 50.0
Don Perita 12.3 12.3 61.0
Gourmet 16.9 28.4 42.1
Gourmet napolitana 16.9 35.7 50.5
Qualitas 13.7 42.3 62.4
Rigby 16.4 19.8 70.5
Rigby italiana 15.1 19.8 60.0
Pure de tomate Big 13.9 13.9 54.7
  1. Notes. Presented are means of the brand-locality-quarter observations, weighted by the sales. Margins are defined as (pmc)/p. Margins computed based on the full model reported on Table 4.

Table A.5:

Margins by product for rice.

Single product Current ownership Collusion
Aruba patna 16.2 35.3 72.8
Blue patna 12.7 30.4 44.5
Blue parna parboiled 11.0 29.6 41.1
Casarone 14.2 14.2 67.7
Green chef 21.2 31.0 45.6
Saman blanco 15.0 21.3 44.8
Saman Parboiled 12.2 21.6 42.5
Saman patna 12.2 24.4 49.4
San jose 15.0 15.0 68.8
Shiva patna 20.3 46.5 68.8
  1. Notes. Presented are means of the brand-locality-quarter observations, weighted by the sales. Margins are defined as (pmc)/p. Margins computed based on the full model reported on Table 4.

A.2 Appendix: Demand Estimation Details

The implementation of the estimation of the model proposed by Berry, Levinsohn, and Pakes (1995) requires determining a method to approximate the integral, an optimization algorithm, initial values, and convergence criteria. Brunner et al. (2017) discuss implementation alternatives so that the estimation results are adequate and the R package “BLPestimatematoR” is provided, which is used in the present work to carry out the estimation.

Regarding the simulation to approximate the integral of the market shares, 200 MLHS (Latin hypercube sampling draws) draws are used. The sensitivity of the results to increasing the number of extractions to 1000 is tested, corroborating that there are no relevant differences in the results. The number of extractions cannot be greater than the number of extractions of the observable characteristics of the individuals. The algorithm used for optimization is BFGS (Broyden–Fletcher–Goldfarb–Shanno).

Regarding the iterations of the contraction, a maximum of 5000 iterations is set or until it is less than 1e−06. Finally, following Nevo (2000) and Chidmi and Lopez (2007), as starting guesses for the average utility vector (γ) the results obtained in the logit model are used.

References

Ackerberg, D. A., K. Caves, and G. Frazer. 2015. “Identification Properties of Recent Production Function Estimators.” Econometrica 83 (6): 2411–51. https://doi.org/10.3982/ecta13408.Search in Google Scholar

Anderson, S. P., A. de Palma, and B. Kreider. 2001. “Tax Incidence in Differentiated Product Oligopoly.” Journal of Public Economics 81 (2): 173–92. https://doi.org/10.1016/s0047-2727(00)00079-7.Search in Google Scholar

Berry, S. T. 1994. “Estimating Discrete-Choice Models of Product Differentiation.” The RAND Journal of Economics 25: 242–62. https://doi.org/10.2307/2555829.Search in Google Scholar

Berry, S. T., and P. A. Haile. 2014. “Identification in Differentiated Products Markets Using Market Level Data.” Econometrica 82 (5): 1749–97.10.3982/ECTA9027Search in Google Scholar

Berry, S., J. Levinsohn, and A. Pakes. 1995. “Automobile Prices in Market Equilibrium.” Econometrica 63 (4): 841–90. https://doi.org/10.2307/2171802.Search in Google Scholar

Berto Villas-Boas, S. 2007. “Vertical Relationships between Manufacturers and Retailers: Inference with Limited Data.” The Review of Economic Studies 74 (2): 625–52. https://doi.org/10.1111/j.1467-937x.2007.00433.x.Search in Google Scholar

Besley, T., and H. S. Rosen. 1999. “Sales Taxes and Prices: An Empirical Analysis.” National Tax Journal 52 (2): 157–78. https://doi.org/10.1086/ntj41789387.Search in Google Scholar

Bet, G. 2021. Market Power in the US Airline Industry. 3913695. https://ssrn.com/abstract=3913695 10.2139/ssrn.3913695Search in Google Scholar

Bresnahan, T. F. 1982. “The Oligopoly Solution Concept Is Identified.” Economics Letters 10 (1): 87–92. https://doi.org/10.1016/0165-1765(82)90121-5.Search in Google Scholar

Brum, C., S. Ogliarusso, and S. Salmieri. 2012. Competitividad del sector aceite comestible en el uruguay. el impacto del mercosur y sus perspectivas. Monografía de grado, Universidad de la República (Uruguay). Montevideo: Facultad de Ciencias Económicas y de Administración.Search in Google Scholar

Brunner, D., F. Heiss, A. Romahn, and C. Weiser. 2017. Reliable Estimation of Random Coefficient Logit Demand Models. Technical report, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition.Search in Google Scholar

Chamberlain, G. 1982. “Multivariate Regression Models for Panel Data.” Journal of Econometrics 18 (1): 5–46. https://doi.org/10.1016/0304-4076(82)90094-x.Search in Google Scholar

Chidmi, B., and R. A. Lopez. 2007. “Brand-Supermarket Demand for Breakfast Cereals and Retail Competition.” American Journal of Agricultural Economics 89 (2): 324–37. https://doi.org/10.1111/j.1467-8276.2007.00994.x.Search in Google Scholar

Conlon, C., and J. H. Mortimer. 2021. “Empirical Properties of Diversion Ratios.” The RAND Journal of Economics 52 (4): 693–726. https://doi.org/10.1111/1756-2171.12388.Search in Google Scholar

Czarnievicz, D., and L. Zipitría. 2018. Concentración y precios en cinco mercados minoristas. Documentos de Trabajo (working papers) 0618, Department of Economics – dECON.Search in Google Scholar

De Loecker, J., and P. T. Scott. 2016. Estimating Market Power Evidence from the US Brewing Industry. Working Paper 22957, National Bureau of Economic Research.10.3386/w22957Search in Google Scholar

De Loecker, J., and F. Warzynski. 2012. “Markups and Firm-Level Export Status.” American Economic Review 102 (6): 2437–71. https://doi.org/10.1257/aer.102.6.2437.Search in Google Scholar

De Loecker, J., P. K. Goldberg, A. K. Khandelwal, and N. Pavcnik. 2016. “Prices, Markups, and Trade Reform.” Econometrica 84 (2): 445–510. https://doi.org/10.3982/ecta11042.Search in Google Scholar

Doraszelski, U., and J. Jaumandreu. 2019. Using Cost Minimization to Estimate Markups. CEPR Discussion Paper No. DP14114, 3496603. https://ssrn.com/abstract=3496603.Search in Google Scholar

Duarte, M., L. Magnolfi, M. Sølvsten, and C. Sullivan. 2021. Testing Firm Conduct. Technical report, working paper, University of Wisconsin-Madison.Search in Google Scholar

Froeb, L., S. Tschantz, and G. Werden. 2005. “Pass-Through Rates and the Price Effects of Mergers.” International Journal of Industrial Organization 23: 703–15. https://doi.org/10.1016/j.ijindorg.2005.08.008.Search in Google Scholar

Hall, R. E. 1988. “The Relation between Price and Marginal Cost in U.S. Industry.” Journal of Political Economy 96 (5): 921–47. https://doi.org/10.1086/261570.Search in Google Scholar

Hausman, J. A. 1996. “Valuation of New Goods under Perfect and Imperfect Competition.” In The Economics of New Goods, 207–48. Chicago, IL: University of Chicago Press.Search in Google Scholar

Horta, R., A. Jung, and P. Garbarino. 2017. La industria oleaginosa en uruguay desde un enfoque estratégico. Montevideo: Universidad Católica del Uruguay. Instituto de Competitividad.Search in Google Scholar

Karp, L. S., and J. M. Perloff. 1987. Estimating Market Structure and Tax Incidence: The Japanese Television Market. Technical Report 6095, University of California, Berkeley, Department of Agricultural and Resource Economics.Search in Google Scholar

Kim, D., and R. W. Cotterill. 2008. “Cost Pass-Through in Differentiated Product Markets: The Case of U.S. Processed Cheese*.” The Journal of Industrial Economics 56 (1): 32–48. https://doi.org/10.1111/j.1467-6451.2008.00331.x.Search in Google Scholar

Kinnucan, H. W. 2019. “Forty Years of Price Transmission Research in the Food Industry: Insights, Challenges and Prospects: Comment.” Journal of Agricultural Economics 70 (3): 874–9. https://doi.org/10.1111/1477-9552.12332.Search in Google Scholar

Lloyd, T. 2017. “Forty Years of Price Transmission Research in the Food Industry: Insights, Challenges and Prospects.” Journal of Agricultural Economics 68 (1): 3–21. https://doi.org/10.1111/1477-9552.12205.Search in Google Scholar

Mahoney, N., and E. G. Weyl. 2017. “Imperfect Competition in Selection Markets.” The Review of Economics and Statistics 99 (4): 637–51. https://doi.org/10.1162/rest_a_00661.Search in Google Scholar

Miller, N. H., and M. C. Weinberg. 2017. “Understanding the Price Effects of the Millercoors Joint Venture.” Econometrica 85 (6): 1763–91. https://doi.org/10.3982/ecta13333.Search in Google Scholar

Miller, N. H., G. Sheu, and M. C. Weinberg. 2021. “Oligopolistic Price Leadership and Mergers: The United States Beer Industry.” American Economic Review 111 (10): 3123–59. https://doi.org/10.1257/aer.20190913.Search in Google Scholar

Miraballes Iguiní, M. 2021. Posicionamiento del arroz uruguayo en el mercado de latinoamérica y el caribe. Tesis de grado.Search in Google Scholar

Nevo, A. 2000. “A Practitioner’s Guide to Estimation of Random-Coefficients Logit Models of Demand.” Journal of Economics & Management Strategy 9 (4): 513–48. https://doi.org/10.1162/105864000567954.Search in Google Scholar

Nevo, A. 2001. “Measuring Market Power in the Ready-To-Eat Cereal Industry.” Econometrica 69 (2): 307–42. https://doi.org/10.1111/1468-0262.00194.Search in Google Scholar

Raval, D. 2023. Testing the production approach to markup estimation. Review of Economic Studies 90 (5): 2592–611.10.1093/restud/rdad002Search in Google Scholar

Slade, M. E. 2004. “Market Power and Joint Dominance in U.K. Brewing.” The Journal of Industrial Economics 52 (1): 133–63. https://doi.org/10.1111/j.0022-1821.2004.00219.x.Search in Google Scholar

Sullivan, D. 1985. “Testing Hypotheses about Firm Behavior in the Cigarette Industry.” Journal of Political Economy 93 (3): 586–98. https://doi.org/10.1086/261317.Search in Google Scholar

Received: 2023-12-07
Accepted: 2024-01-30
Published Online: 2024-05-21

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 5.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jafio-2023-0059/html
Scroll to top button