Abstract
Diffusion bonding of oxide dispersion strengthened ferritic steel PM2000 1.2 mm thickness plates sandwiched by aluminium foils was carried out. This joining was achieved under laboratory air at temperatures less than 660 °C by simultaneously applying heat and sufficient compression of about 210 MPa to give a high level of plastic deformation to the Al interlayer. The resulting microstructures and phases at the interface were characterised using scanning and transmission electron microscopy and microanalyses. The formation of intermetallic phase type FeAl was detected close to the interface and the FeAl3 further away on the aluminium side. The bonded samples were heat treated under a special regime and bend tested. In the treated samples Fe–Cr compounds were noticed. The corrosion study of the heat-treated samples in laboratory air at 950 °C demonstrated a high temperature corrosion resistance.
-
Research ethics: Not applicable.
-
Author contributions: The author has accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The author states no competing interests.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Wasilkowska, A.; Bartsch, M.; Messerschmidt, U.; Herzog, R.; Czyrska-Filemonowicz, A. Creep Mechanisms of Ferritic Oxide Dispersion Strengthened Alloys. J. Mater. Process. Technol. 2003, 133 (1–2), 218–224. https://doi.org/10.1016/S0924-0136(02)00237-6.Search in Google Scholar
2. Strehl, G.; Naumenko, D.; Al-Badairy, H.; Rodriguez Lobo, L. M.; Borchardt, G.; Tatlock, G. J.; Quadakkers, W. J. The Effect of Aluminium Depletion on the Oxidation Behaviour of FeCrAl Foils. Mater. High Temp. 2000, 17 (1), 87–92. https://doi.org/10.1179/mht.2000.014.Search in Google Scholar
3. Tolpygo, V. K. The Morphology of Thermally Grown α-Al2O3 Scales on Fe-Cr-Al Alloys. Oxid. Met. 1999, 51 (5–6), 449–474. https://doi.org/10.1023/A:1018839227090.10.1023/A:1018839227090Search in Google Scholar
4. Merceron, G.; Molins, R.; Strudel, J.-L. Oxidation Behaviour and Microstructural Evolution of FeCrAl ODS Alloys at High Temperature. Mater. High Temp. 2000, 17 (1), 149–157. https://doi.org/10.1179/mht.2000.022.Search in Google Scholar
5. Evans, A. G.; Crumley, G. B.; Demaray, R. E. On the Mechanical Behaviour of Brittle Coatings and Layers. Oxid. Met. 1903, 20, 193–216. https://doi.org/10.1007/BF00656841.Search in Google Scholar
6. Schutze, M. Mechanical Properties of Oxide Scales. Oxid. Met. 1995, 44, 29–61. https://doi.org/10.1007/BF01046722.Search in Google Scholar
7. Uran, S.; Veal, B.; Grimsditch, M.; Pearson, J.; Berger, A. Effect of Surface Roughness on Oxidation: Changes in Scale Thickness, Composition, and Residual Stress. Oxid. Met. 2000, 54, 73–85. https://doi.org/10.1023/A:1004650612791.10.1023/A:1004650612791Search in Google Scholar
8. Ge, F.; Peng, B.; Pedro Oliveira, J.; Ke, W.; Biruke Tishome, F.; Li, Y.; Zeng, Z. Metals 2021, 11 (10), 1578. https://doi.org/10.3390/met11101578.Search in Google Scholar
9. Tatlock, G. J.; Dawson, K.; Boegelein, T.; Moustoukas, K.; Jones, A. R. Mater. Today: Proc. 2016, 3, 3086–3093. https://doi.org/10.1016/j.matpr.2016.09.024.Search in Google Scholar
10. Capdevila Montes, C.; Bhadeshia, H. K. D. H. Influence of Deformation on Recrystallization of an Yttrium Oxide Dispersion-Strengthened Iron Alloy (PM2000). Adv. Eng. Mater. 2003, 5 (4), 232–237. https://doi.org/10.1002/adem.200300322.Search in Google Scholar
11. Chen, C. L.; Wang, P.; Tatlock, G. J. Phase Transformations in Yttrium – Aluminium Oxides in Friction Stir Welded and Recrystallised PM2000 Alloys. Mater. High Temp. 2009, 26 (3), 299–303. https://doi.org/10.3184/096034009X465211.Search in Google Scholar
12. Karfoul, M. K. The Effect of the Presence of the Active Metal in ODS Laser Weld Metal. In Proceeding of LTWMP, NASU: Kiev, 2005; pp. 186–189.Search in Google Scholar
13. Shinozaki, K.; Kang, C. Y.; Kim, Y. C.; Aritoshi, M.; North, T. H.; Nakao, Y. The Metallurgical and Mechanical Properties of ODS Alloy MA 956 Friction Welds. Weld. J. 1997, 76 (8), 289–299-s.Search in Google Scholar
14. Ambroziak, A. Investigations of the Friction Welding of Incoloy MA 956 Alloy. Arch. Civ. Mech. Eng. 2010, 10 (2), 5–13. https://doi.org/10.1016/S1644-9665(12)60047-8.Search in Google Scholar
15. Yu, Z.; Feng, Z.; Hoelzer, D.; Tan, L.; Sokolov, M. A: Friction Stir Welding of ODS Steels and RAFM Steels. Metall. Mater. Trans. E 2015, 2, 164–172. https://doi.org/10.1007/s40553-015-0054-9.Search in Google Scholar
16. Chen, C. L.; Tatlock, G. J.; Jones, A. R. Microstructural Evolution in Friction Stir Welding of Nanostructured ODS Alloys. J. Alloys Compd. 2010, 504 (Sup1), S460. https://doi.org/10.1016/j.jallcom.2010.02.192.Search in Google Scholar
17. Dawson, K.; Carter, S.; Tatlock, G. J.; Stanhope, C. Friction Stir Welding of PM2000 ODS- Alloy. J. Mater. Sci. Technol. 2014, 30 (13), 1685–1690. https://doi.org/10.1179/1743284714Y.0000000553.Search in Google Scholar
18. Dawson, K.; Serrano, M.; Carter, S.; Iqbal, N.; Almasy, L.; Tian, Q.; Jimenez-Melero, E. Impact of Friction Stir Welding on the Microstructure of ODS Steel. J. Nucl. Mater. 2017, 486, 129–137. https://doi.org/10.1016/j.jnucmat.2016.12.033.Search in Google Scholar
19. Rees, M.; Hurst, R. C.; Parker, J. D. Diffusion Bonding of Ferritic Oxide Dispersion Strengthened Alloys to Austenitic Superalloys. J. Mater. Sci. 1996, 31, 4493–4501. https://doi.org/10.1007/BF00366345.Search in Google Scholar
20. Tatlock, G. J.; Dyadco, E. G.; Dryepondt, S. N.; Wright, I. G. Metall. Mater. Trans. A 2007, 38 (7), 1663–1665. https://doi.org/10.1007/s11661-007-9233-3.Search in Google Scholar
21. Noh, S.; Ryuta, K.; Akihiko, K. Solid-state Diffusion Bonding of High-Cr ODS Ferritic Steel. Acta Mater. 2011, 59 (8), 3196–3204. https://doi.org/10.1016/J.actamat.2011.01.059.Search in Google Scholar
22. Krishnardula, V. G.; Sofyan, N. I.; Gale, W. F.; Fergus, J. W. Metall. Mater. Trans. A 2006, 37 (2), 497–504. https://doi.org/10.1007/s11661-006-0021-2.Search in Google Scholar
23. Khan, T. I.; Wallach, E. R. Transient Liquid Phase Diffusion Bonding and Associated Recrystallization Phenomenon when Joining ODS Ferritic Superalloys. J. Mater. Sci. 1996, 31, 2937–2943. https://doi.org/10.1007/BF00356005.Search in Google Scholar
24. Zhang, W.; Ao, S.; Oliveira, J. P.; Li, C.; Zeng, Z.; Wang, A.; Luo, Z. Scr. Mater. 2020, 178, 414–417. https://doi.org/10.1016/j.scriptamat.2019.12.012.Search in Google Scholar
25. Karfoul, M. K.; Hamed, H. The Diffusion Welding of Stainless Steel A304 to Al with Ambient Normal Air Conditions. In Proceedings IMEC04-5060, Kuwait, 2004; pp. 636–646.Search in Google Scholar
26. Yeh, M. S.; Tseng, Y. H.; Chuang, T. H. Effect of Superplastic Deformation on Diffusion Welding of SuperDux 65 Stainless Steel. Weld. J. 2012, 78, 301-s–304-s.Search in Google Scholar
27. Shi, H.; Qui, S.; Qui, R.; Zhang, X.; Hua, Y. Mater. Manuf. Processes 2012, 27 (12), 366–1369. https://doi.org/10.1080/10426914.2012.663122.Search in Google Scholar
28. ASM International Handbook Committee. ASM Handbook; ASM International: USA, Vol. 3, 1992; p 2.44.Search in Google Scholar
29. Kwang-Jin, L.; Shinji, K. Mater. Trans. 2006, 47 (4), 1178–1185. https://doi.org/10.2320/matertrans.47.1178.Search in Google Scholar
30. Black, P. J. The Structure of FeAl3. Acta Crystallogr. 1955, 8, 43–48. https://doi.org/10.1107/s0365110x5500011x.Search in Google Scholar
31. Karfoul, M. K.; Tatlock, G. J.; Murray, R. The Behavior of Fe and Al at the Interface during Carbon Steel Diffusion to Aluminium. J. Mater. Sci. 2007, 42 (14), 5692–5699. https://doi.org/10.1007/s10853-006-0742-z.Search in Google Scholar
32. Dybkov, V. I. Interaction of 18 Cr- 10 Ni Stainless Steel with Liquid Aluminium. J. Mater. Sci. 1990, 25, 3615–3633. https://doi.org/10.1007/bf00575397.Search in Google Scholar
33. Liu, B.; Yang, Q.; Wang, Y. Results Phys. 2019, 12 (3), 514–524. https://doi.org/10.1016/j.rinp.2018.11.076.Search in Google Scholar
34. Reed-Hill, R. Physical Metallurgy Principles, 4th ed.; CENGAGE Learning: Stamford, USA, 1973.Search in Google Scholar
35. Seith, W. Diffusion in Metallen; Springer-Verlage: Berlin, 1955.10.1007/978-3-642-53297-9Search in Google Scholar
36. Eggersmann, M.; Mehrer, H. Diffusion in Intermetallic Phases of the Fe-Al System. Philos. Mag. A 2009, 80, 1219–1244. https://doi.org/10.1080/01418610008212112.Search in Google Scholar
37. Atsushi, H. Parameters of Combustion Synthesis of FeAl Intermetallic Compound by Dipping Experiment of Fe Wire into Al Molt. Mater. Trans. 2010, 51 (3), 516–524. https://doi.org/10.2320/matertrans.M2009319.Search in Google Scholar
38. He, H.; Gou, W.; Wang, S.; Hou, Y.; Ma, C.; Mendez, P. F. Kinetics of Intermetallic Compound Layers during Initial Period of Reaction between Mild Steel and Molten Aluminium. Int. J. Mater. Res. 2019, 110 (3), 194–201. https://doi.org/10.3139/146.111735.Search in Google Scholar
39. Martinez, M.; Viguier, B.; Maugis, P.; Lacaze, J. Intermetallics 2006, 14 (10–11), 1214–1220. https://doi.org/10.1016/j.intermet.2005.11.018.Search in Google Scholar
40. Zamanzade, W.; Bannoush, A.; Motz, C. A Review on the Properties of Iron Aluminide Intermetallics. Crystals 2016, 6 (1), 10. https://doi.org/10.3390/cryst6010010.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Preparation of cellulose/activated carbon cells: application to the adsorption of cobalt from stagnant waters
- CNT/TiO2 nanocomposite for environmental remediation
- Examining the dual effect of copper nanoparticles and nitrogen doping on Cu@N-TiO2
- Mechanochemical synthesis of a red luminescent coordination polymer from a polydentate quinoline ligand with large conjugation
- Hybrid effect of neem seed and groundnut shell bio-fillers on the mechanical, water absorption and thermal properties of jute fiber reinforced epoxy composites
- Erosion behaviour of B4C/TiB2/Mo ceramic nozzles
- Facile fabrication of a flower-like superhydrophobic copper surface with superior corrosion resistance
- Characterisation of Fe, Cr and Al behaviour at the interface during diffusion bonding of ODS/Al couple
- Effect of shielding gas composition and pulsed current frequency on geometry and nitrogen content of 304L austenitic stainless-steel welds
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Original Papers
- Preparation of cellulose/activated carbon cells: application to the adsorption of cobalt from stagnant waters
- CNT/TiO2 nanocomposite for environmental remediation
- Examining the dual effect of copper nanoparticles and nitrogen doping on Cu@N-TiO2
- Mechanochemical synthesis of a red luminescent coordination polymer from a polydentate quinoline ligand with large conjugation
- Hybrid effect of neem seed and groundnut shell bio-fillers on the mechanical, water absorption and thermal properties of jute fiber reinforced epoxy composites
- Erosion behaviour of B4C/TiB2/Mo ceramic nozzles
- Facile fabrication of a flower-like superhydrophobic copper surface with superior corrosion resistance
- Characterisation of Fe, Cr and Al behaviour at the interface during diffusion bonding of ODS/Al couple
- Effect of shielding gas composition and pulsed current frequency on geometry and nitrogen content of 304L austenitic stainless-steel welds
- News
- DGM – Deutsche Gesellschaft für Materialkunde