Home On the effect of oxide scale stability on the internal nitridation process in high-temperature alloys
Article
Licensed
Unlicensed Requires Authentication

On the effect of oxide scale stability on the internal nitridation process in high-temperature alloys

  • Robert Orosz , Ulrich Krupp EMAIL logo and Hans-Jürgen Christ
Published/Copyright: February 16, 2022
Become an author with De Gruyter Brill

Abstract

Internal high-temperature corrosion of metallic materials is an important process often determining the service live of components used for high-temperature processes. As soon as a material looses the ability to form a dense and adherent oxide scale, non-metallic elements (e. g., O, N, C, and S) can diffuse from the atmosphere into the bulk material and react with alloying elements, forming different kinds of internal precipitates. The corrosion behaviour of two commercial alloys, Nicrofer 7520Ti and CMSX-4, and of the model alloy Ni – 20Cr – 6Ti was investigated in air and nitriding atmosphere at 1000 °C and 1100 °C under isothermal and thermal-cycling conditions. The study was performed using a continuous thermogravimetric method, which permits mass changes to be measured in different atmospheres and under thermal-cycling conditions. It was shown that damage in the oxide scale, caused by cracking or spallation, leads to an enhanced internal corrosion attack manifesting itself in the precipitation of oxides and nitrides. The experimental results were described in a mechanismbased approach by means of a simulation model that combines a numerical finite-difference treatment of the diffusion differential equations and the commercial thermodynamic program ChemApp. The model is able to predict the complex material behaviour during high-temperature exposure.


Dr.-Ing. habil. Ulrich Krupp Institut für Werkstofftechnik Universität Siegen D-57068 Siegen, Germany Tel.: +49 271 740 2184 Fax: +49 271 740 2545

Dedicated to Professor Dr.-Ing. habil. Dr. h. c. Heinrich Oettel on the occasion of his 65th birthday


References

[1] S.R. Pillai, N.S. Barasi, H.S. Khatak: Oxid. Met. 53 (2000) 193.10.1023/A:1004595016655Search in Google Scholar

[2] M. Schütze, S. Ito, W. Przybilla, H. Echsler, C. Bruns: Mater.High Temp. 18 (2001) 39.10.1179/mht.2001.004Search in Google Scholar

[3] V.K. Tolpygo, D.R. Clarke:Surf. Coat. Tech. 120 (1999) 1.10.1016/S0257-8972(99)00331-XSearch in Google Scholar

[4] J.L. Smialek, J.V. Auping: Oxid. Met. 57 (2002) 559.10.1023/A:1015308606869Search in Google Scholar

[5] D. Poquillon, D. Monceau:Oxid. Met. 59 (2003) 1.10.1023/A:1023004430423Search in Google Scholar

[6] D. Monceau, D. Poquillon:Oxid. Met. 61 (2004) 143.10.1023/B:OXID.0000016281.25965.93Search in Google Scholar

[7] P. Kofstad:Oxid. Met. 44 (1995) 3.10.1007/BF01046721Search in Google Scholar

[8] I. Gurrappa, S. Weinbruch, D. Naumenko, W.J. Quaddakkers:Mater. Corr. 51 (2000) 224–235.10.1002/(SICI)1521-4176(200004)51:4<224::AID-MACO224>3.0.CO;2-BSearch in Google Scholar

[9] U. Krupp, H.-J. Christ:Metall. Trans. A 31 (2000) 47.10.1007/s11661-000-0051-0Search in Google Scholar

[10] U. Krupp: Innere Nitrierung von Nickelbasislegierungen, VDI-Fortschritt-Berichte, Reihe 5, No. 529, VDI-Verlag, Düsseldorf (1998).Search in Google Scholar

[11] D.L. Douglass:JOM 11 (1991) 74.10.1007/BF03222725Search in Google Scholar

[12] U. Krupp, S.Y. Chang, H.-J. Christ, in:M. Schütze, W.J. Quaddakers, J.R. Nichols (Eds.), Proc. Life Time Modelling of High-Temperature Corrosion Processes, EFC Publications No.34, Frankfurt, Germany (2001) 148.Search in Google Scholar

[13] B.A. Pint, P.F. Tortorelli, I.G. Wright, in:M. Schütze, W.J. Quaddakers (Eds.), Proc. EFC-Workshop: Cyclic Oxidation Testing as a Tool for High-Temperature Materials Characterization, EFC Publications No. 27, Frankfurt, Germany (1999) 111.Search in Google Scholar

[14] C. Wagner: Z. Elektrochemie63 (1959) 772.10.1002/bbpc.19590630713Search in Google Scholar

[15] U. Krupp, H.-J. Christ: Oxid. Met. 52 (1999) 299.10.1023/A:1018895628849Search in Google Scholar

[16] A. Schimke, S.Y. Chang, U. Krupp, H.-J. Christ, in: D.G. Morris (Ed.), Proc. Euromat 1999, Vol.10: Intermetallics and Superalloys, Munich (1999) 3.Search in Google Scholar

[17] C.E. Lowell, C.A. Barett, R.W. Palmer, J.V. Auping: Oxid. Met.36 (1991) 81.10.1007/BF00938457Search in Google Scholar

[18] C.E. Lowell, J.L. Smialek, C.A. Barett,in:R.A. Rapp (Ed.), High Temperature Corrosion, NACE, Houston (1983) 219.Search in Google Scholar

[19] S.Y. Chang, U. Krupp, H.-J. Christ,in: M. Schütze, W.J. Quaddakers (Eds.), Proc. EFC-Workshop: Cyclic Oxidation Testing as a Tool for High-Temperature Materials Characterization, EFC Publications No.27, Frankfurt, Germany (1999) 60.Search in Google Scholar

[20] S.Y. Chang: Innere Oxidation und Nitrierung als Folge einer nicht schützenden Oxidschicht auf Nickelbasis-Legierungen, Doctorate Thesis, Universität Siegen (2001).Search in Google Scholar

Received: 2004-10-14
Accepted: 2005-02-08
Published Online: 2022-02-16

© 2005 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Heinrich Oettel – 65 Jahre
  4. Articles Basic
  5. Misorientations and geometrically necessary dislocations in deformed copper crystals: A microstructural analysis of X-ray rocking curves
  6. Microstructure and lattice defects in highly deformed metals by X-ray diffraction whole powder pattern modelling
  7. Magnetoplasticity
  8. Articles Applied
  9. Finite-element analysis of the hot-pressing consolidation of continuous Al2O3 fibers-reinforced NiAl composites
  10. Modelling the stress state of a thermal barrier coating system at high temperatures
  11. Impedance spectroscopy of thermal barrier coatings as non-destructive evaluation tool for failure detection
  12. Diffraction by image processing and its application in materials science
  13. On the preferred orientation in Ti1–xAlxN and Ti1–xyAlxSiyN thin films
  14. Boron segregation and creep in ultra-fine grained tempered martensite ferritic steels
  15. Numeric simulation of the α/γ-phase ratio of ferritic-austenitic duplex steels
  16. Deformation behaviour and microscopic investigations of cyclically loaded railway wheels and tyres
  17. Similarity considerations on the simulation of turning processes of steels
  18. Crack-tip residual stresses and crack propagation in cyclically-loaded specimens under different loading modes
  19. On the effect of oxide scale stability on the internal nitridation process in high-temperature alloys
  20. Nitriding behaviour of the intermetallic alloy FeAl
  21. Material-related fundamentals of cutting techniques for GaAs wafer manufacturing
  22. Determination of RuAl phase boundaries in binary Ru–Al phase diagram at room temperature and 1200 °C
  23. On the Orowan stress in intermetallic ODS alloys and its superposition with grain size and solid solution hardening
  24. Effects of particle reinforcement on creep behaviour of AlSi1MgCu
  25. Effect of preaging on the precipitation behaviour of AlMgSi1
  26. Corrosion behaviour of hard coatings on Mg substrates
  27. Phase transformations in creep resistant MgYNdScMn alloy
  28. Notifications/Mitteilungen
  29. Personal/Personelles
  30. Press/Presse
  31. Conferences
Downloaded on 28.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2005-0135/html
Scroll to top button