Home Life Sciences Extracellular hemin is a reverse use-dependent gating modifier of cardiac voltage-gated Na+ channels
Article
Licensed
Unlicensed Requires Authentication

Extracellular hemin is a reverse use-dependent gating modifier of cardiac voltage-gated Na+ channels

  • Guido Gessner , Mahdi Jamili , Pascal Tomczyk , Dirk Menche , Roland Schönherr , Toshinori Hoshi and Stefan H. Heinemann ORCID logo EMAIL logo
Published/Copyright: August 29, 2022

Abstract

Heme (Fe2+-protoporphyrin IX) is a well-known protein prosthetic group; however, heme and hemin (Fe3+-protoporphyrin IX) are also increasingly viewed as signaling molecules. Among the signaling targets are numerous ion channels, with intracellular-facing heme-binding sites modulated by heme and hemin in the sub-µM range. Much less is known about extracellular hemin, which is expected to be more abundant, in particular after hemolytic insults. Here we show that the human cardiac voltage-gated sodium channel hNaV1.5 is potently inhibited by extracellular hemin (IC50 ≈ 80 nM), while heme, dimethylhemin, and protoporphyrin IX are ineffective. Hemin is selective for hNaV1.5 channels: hNaV1.2, hNaV1.4, hNaV1.7, and hNaV1.8 are insensitive to 1 µM hemin. Using domain chimeras of hNaV1.5 and rat rNaV1.2, domain II was identified as the critical determinant. Mutation N803G in the domain II S3/S4 linker largely diminished the impact of hemin on the cardiac channel. This profile is reminiscent of the interaction of some peptide voltage-sensor toxins with NaV channels. In line with a mechanism of select gating modifiers, the impact of hemin on NaV1.5 channels is reversely use dependent, compatible with an interaction of hemin and the voltage sensor of domain II. Extracellular hemin thus has potential to modulate the cardiac function.


Corresponding author: Stefan H. Heinemann, Department of Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Straße 2, D-07745 Jena, Germany, E-mail:

Award Identifier / Grant number: GM121375

Award Identifier / Grant number: HE2993/18-1

Acknowledgments

We thank Prof. Enrico Leipold (University of Lübeck, Germany) for constructing hNaV1.8c4.

  1. Author contributions: G.G.: study design, molecular biology of expression constructs, electrophysiological recordings, data analysis; M.J.: electrophysiological recordings, data analysis; P.T., D.M.: synthesis of dimethylhemin; R.S.: molecular biology of expression constructs; T.H.: structural modeling, data review, writing; S.H.H.: study design, data analysis, writing. All authors contributed to the editing of the manuscript.

  2. Research funding: Support by the German Research Foundation (DFG, SHH: HE2993/18-1) and the National Institutes of Health (NIH, TH: GM121375).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Burton, M.J., Kapetanaki, S.M., Chernova, T., Jamieson, A.G., Dorlet, P., Santolini, J., Moody, P.C., Mitcheson, J.S., Davies, N.W., Schmid, R., et al.. (2016). A heme-binding domain controls regulation of ATP-dependent potassium channels. Proc. Natl. Acad. Sci. USA 113: 3785–3790, https://doi.org/10.1073/pnas.1600211113.Search in Google Scholar PubMed PubMed Central

Burton, M.J., Cresser-Brown, J., Thomas, M., Portolano, N., Basran, J., Freeman, S.L., Kwon, H., Bottrill, A.R., Llansola-Portoles, M.J., Pascal, A.A., et al.. (2020). Discovery of a heme-binding domain in a neuronal voltage-gated potassium channel. J. Biol. Chem. 295: 13277–13286, https://doi.org/10.1074/jbc.ra120.014150.Search in Google Scholar

Cader, A., Singh, S.M., and Zia, M.I. (2018). Brugada syndrome unmasked by malaria-induced fever. J. Cardiol. Cases 18: 136–137, https://doi.org/10.1016/j.jccase.2018.06.002.Search in Google Scholar PubMed PubMed Central

Chen, H. and Heinemann, S.H. (2001). Interaction of scorpion α-toxins with cardiac sodium channels: binding properties and enhancement of slow inactivation. J. Gen. Physiol. 117: 505–518, https://doi.org/10.1085/jgp.117.6.505.Search in Google Scholar PubMed PubMed Central

Coburger, I., Yang, K., Bernert, A., Wiesel, E., Sahoo, N., Swain, S.M., Hoshi, T., Schönherr, R., and Heinemann, S.H. (2020). Impact of intracellular hemin on N-type inactivation of voltage-gated K+ channels. Pflüger’s Arch. 472: 551–560, https://doi.org/10.1007/s00424-020-02386-1.Search in Google Scholar PubMed PubMed Central

Crespo, E.M., Bhadra, K., and Lobel, R. (2009). Brugada syndrome unmasked by a mosquito. J. Hosp. Med. 4: E20–E22, https://doi.org/10.1002/jhm.478.Search in Google Scholar PubMed

Daimi, H., Lozano-Velasco, E., Aranega, A., and Franco, D. (2022). Genomic and non-genomic regulatory mechanisms of the cardiac sodium channel in cardiac arrhythmias. Int. J. Mol. Sci. 23: 1381.10.3390/ijms23031381Search in Google Scholar PubMed PubMed Central

De Lera Ruiz, M. and Kraus, R.L. (2015). Voltage-gated sodium channels: structure, function, pharmacology, and clinical indications. J. Med. Chem. 58: 7093–7118, https://doi.org/10.1021/jm501981g.Search in Google Scholar PubMed

Hanna, D.A., Harvey, R.M., Martinez-Guzman, O., Yuan, X., Chandrasekharan, B., Raju, G., Outten, F.W., Hamza, I., and Reddi, A.R. (2016). Heme dynamics and trafficking factors revealed by genetically encoded fluorescent heme sensors. Proc. Natl. Acad. Sci. USA 113: 7539–7544, https://doi.org/10.1073/pnas.1523802113.Search in Google Scholar PubMed PubMed Central

Heinemann, S.H. and Leipold, E. (2007). Conotoxins of the O-superfamily affecting voltage-gated sodium channels. Cell. Mol. Life Sci. 64: 1329–1340, https://doi.org/10.1007/s00018-007-6565-5.Search in Google Scholar PubMed

Heinemann, S.H. and Leipold, E. (2011). Tools for studying peptide toxin modulation of voltage-gated sodium channels. In: SFET editions. Toxins and Ion Transfers, Giv-sur-Yvette, pp. 29–37. http://www.sfet.asso.fr.Search in Google Scholar

Heinemann, S.H., Terlau, H., and Imoto, K. (1992a). Molecular basis for pharmacological differences between brain and cardiac sodium channels. Pflüger’s Arch. 422: 90–92, https://doi.org/10.1007/bf00381519.Search in Google Scholar

Heinemann, S.H., Terlau, H., Stühmer, W., Imoto, K., and Numa, S. (1992b). Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 356: 441–443, https://doi.org/10.1038/356441a0.Search in Google Scholar PubMed

Horrigan, F.T., Heinemann, S.H., and Hoshi, T. (2005). Heme regulates allosteric activation of the Slo1 BK channel. J. Gen. Physiol. 126: 7–21, https://doi.org/10.1085/jgp.200509262.Search in Google Scholar PubMed PubMed Central

Jentho, E., Ruiz-Moreno, C., Novakovic, B., Kourtzelis, I., Megchelenbrink, W.L., Martins, R., Chavakis, T., Soares, M.P., Kalafati, L., Guerra, J., et al.. (2021). Trained innate immunity, long-lasting epigenetic modulation, and skewed myelopoiesis by heme. Proc. Natl. Acad. Sci. USA 118: e2102698118.10.1073/pnas.2102698118Search in Google Scholar PubMed PubMed Central

Körner, J., Albani, S., Eswaran, V.S.B., Roehl, A.B., Rossetti, G., and Lampert, A. (2022). Sodium channels and local anesthetics - old friends with new perspectives. Front. Pharmacol. 13: 837088.10.3389/fphar.2022.837088Search in Google Scholar

Leipold, E., HanseL, A., Borges, A., and Heinemann, S.H. (2006). Subtype specificity of scorpion β-toxin Tz1 interaction with voltage-gated sodium channels is determined by the pore loop of domain 3. Mol. Pharmacol. 70: 340–347, https://doi.org/10.1124/mol.106.024034.Search in Google Scholar PubMed

Leipold, E., Debie, H., Zorn, S., Borges, A., Olivera, B.M., Terlau, H., and Heinemann, S.H. (2007). µO conotoxins inhibit NaV channels by interfering with their voltage sensors in domain-2. Channels 1: 253–262, https://doi.org/10.4161/chan.4847.Search in Google Scholar PubMed

Leipold, E., Borges, A., and Heinemann, S.H. (2012). Scorpion β-toxin interference with NaV channel voltage sensor gives rise to excitatory and depressant modes. J. Gen. Physiol. 139: 305–319, https://doi.org/10.1085/jgp.201110720.Search in Google Scholar PubMed PubMed Central

Li, K.H.C., Lee, S., Yin, C., Liu, T., Ngarmukos, T., Conte, G., Yan, G.X., Sy, R.W., Letsas, K.P., and Tse, G. (2020). Brugada syndrome: a comprehensive review of pathophysiological mechanisms and risk stratification strategies. Int. J. Cardiol. Heart Vasc. 26: 100468, https://doi.org/10.1016/j.ijcha.2020.100468.Search in Google Scholar PubMed PubMed Central

Li, Z., Jin, X., Wu, T., Huang, G., Wu, K., Lei, J., Pan, X., and Yan, N. (2021). Structural basis for pore blockade of the human cardiac sodium channel NaV1.5 by the antiarrhythmic drug quinidine. Angew. Chem. Int. Ed. 60: 11474–11480, https://doi.org/10.1002/ange.202102196.Search in Google Scholar

Meggiolaro, M., Zorzi, A., Maghawry, M.E., Peruzza, F., Migliore, F., and Pittoni, G.M. (2013). Brugada ECG disclosed by acute malaria: is it all about fever and propofol? J. Clin. Anesth. 25: 483–487, https://doi.org/10.1016/j.jclinane.2013.02.012.Search in Google Scholar PubMed

Ogawa, K., Sun, J., Taketani, S., Nakajima, O., Nishitani, C., Sassa, S., Hayashi, N., Yamamoto, M., Shibahara, S., Fujita, H., et al.. (2001). Heme mediates derepression of Maf recognition element through direct binding to transcription repressor Bach1. EMBO J. 20: 2835–2843, https://doi.org/10.1093/emboj/20.11.2835.Search in Google Scholar PubMed PubMed Central

Ponka, P. (1999). Cell biology of heme. Am. J. Med. Sci. 318: 241–256, https://doi.org/10.1097/00000441-199910000-00004.Search in Google Scholar PubMed

Roumenina, L.T., Rayes, J., Lacroix-Desmazes, S., and Dimitrov, J.D. (2016). Heme: modulator of plasma systems in hemolytic diseases. Trends Mol. Med. 22: 200–213, https://doi.org/10.1016/j.molmed.2016.01.004.Search in Google Scholar PubMed

Sahoo, N., Goradia, N., Ohlenschläger, O., Schönherr, R., Friedrich, M., Plass, W., Kappl, R., Hoshi, T., and Heinemann, S.H. (2013). Heme impairs the ball-and-chain inactivation of potassium channels. Proc. Natl. Acad. Sci. USA 110: E4036–E4044, https://doi.org/10.1073/pnas.1313247110.Search in Google Scholar PubMed PubMed Central

Sahoo, N., Yang, K., Coburger, I., Bernert, A., Swain, S.M., Gessner, G., Kappl, R., Kühl, T., Imhof, D., Hoshi, T., et al.. (2022). Intracellular hemin is a potent inhibitor of the voltage-gated potassium channel Kv10.1. Sci. Rep. 12: 14645.10.1038/s41598-022-18975-2Search in Google Scholar PubMed PubMed Central

Savio-Galimberti, E., Gollob, M.H., and Darbar, D. (2012). Voltage-gated sodium channels: biophysics, pharmacology, and related channelopathies. Front. Pharmacol. 3: 124, https://doi.org/10.3389/fphar.2012.00124.Search in Google Scholar PubMed PubMed Central

Sawicki, K.T., Chang, H.C., and Ardehali, H. (2015). Role of heme in cardiovascular physiology and disease. J. Am. Heart Assoc. 4: e001138, https://doi.org/10.1161/jaha.114.001138.Search in Google Scholar

Soares, M.P. and Bozza, M.T. (2016). Red alert: labile heme is an alarmin. Curr. Opin. Immunol. 38: 94–100, https://doi.org/10.1016/j.coi.2015.11.006.Search in Google Scholar PubMed

Steffan, R. and Heinemann, S.H. (1997). Error estimates for results of nonstationary noise analysis derived with linear least squares methods. J. Neurosci. Methods 78: 51–63, https://doi.org/10.1016/s0165-0270(97)00139-8.Search in Google Scholar PubMed

Tang, X.D., Xu, R., Reynolds, M.F., Garcia, M.L., Heinemann, S.H., and Hoshi, T. (2003). Haem can bind to and inhibit mammalian calcium-dependent Slo1 BK channels. Nature 425: 531–535, https://doi.org/10.1038/nature02003.Search in Google Scholar PubMed

Tao, X., Lee, A., Limapichat, W., Dougherty, D.A., and Mackinnon, R. (2010). A gating charge transfer center in voltage sensors. Science 328: 67–73, https://doi.org/10.1126/science.1185954.Search in Google Scholar PubMed PubMed Central

Terlau, H., Heinemann, S.H., Stühmer, W., Pusch, M., Conti, F., Imoto, K., and Numa, S. (1991). Mapping the site of block by tetrodotoxin and saxitoxin of sodium channel II. FEBS Lett. 293: 93–96, https://doi.org/10.1016/0014-5793(91)81159-6.Search in Google Scholar PubMed

Tsiftsoglou, A.S., Tsamadou, A.I., and Papadopoulou, L.C. (2006). Heme as key regulator of major mammalian cellular functions: molecular, cellular, and pharmacological aspects. Pharmacol. Ther. 111: 327–345, https://doi.org/10.1016/j.pharmthera.2005.10.017.Search in Google Scholar PubMed

Wang, S., Publicover, S., and Gu, Y. (2009). An oxygen-sensitive mechanism in regulation of epithelial sodium channel. Proc. Natl. Acad. Sci. USA 106: 2957–2962, https://doi.org/10.1073/pnas.0809100106.Search in Google Scholar PubMed PubMed Central

Wisedchaisri, G. and El-Din, T.M.G. (2022). Druggability of voltage-gated sodium channels - exploring old and new drug receptor sites. Front. Pharmacol. 13: 858348, https://doi.org/10.3389/fphar.2022.858348.Search in Google Scholar PubMed PubMed Central

Wißbrock, A., Goradia, N.B., Kumar, A., Paul George, A.A., Kühl, T., Bellstedt, P., Ramachandran, R., Hoffmann, P., Galler, K., Popp, J., et al.. (2019). Structural insights into heme binding to IL-36α proinflammatory cytokine. Sci. Rep. 9: 16893, https://doi.org/10.1038/s41598-019-53231-0.Search in Google Scholar PubMed PubMed Central

Zorn, S., Leipold, E., Hansel, A., Bulaj, G., Olivera, B.M., Terlau, H., and Heinemann, S.H. (2006). The µO-conotoxin MrVIA inhibits voltage-gated sodium channels by associating with domain-3. FEBS Lett. 580: 1360–1364, https://doi.org/10.1016/j.febslet.2006.01.057.Search in Google Scholar PubMed


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2022-0194).


Received: 2022-06-01
Accepted: 2022-08-10
Published Online: 2022-08-29
Published in Print: 2022-11-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2022-0194/html
Scroll to top button