Home In vitro maturation of Drosophila melanogaster Spätzle protein with refolded Easter reveals a novel cleavage site within the prodomain
Article
Licensed
Unlicensed Requires Authentication

In vitro maturation of Drosophila melanogaster Spätzle protein with refolded Easter reveals a novel cleavage site within the prodomain

  • Christian Ursel , Uwe Fandrich , Anita Hoffmann , Torsten Sieg , Christian Ihling and Milton T. Stubbs EMAIL logo
Published/Copyright: May 16, 2013

Abstract

Dorsoventral patterning during Drosophila melanogaster embryogenesis is mediated by a well-defined gradient of the mature NGF-like ligand Spätzle. Easter, the ultimate protease of a ventrally-restricted serine protease cascade, plays a key role in the regulation of the morphogenic gradient, catalyzing the activation cleavage of proSpätzle. As a result of alternative splicing, proSpätzle exists in multiple isoforms, almost all of which differ only in their prodomain. Although this domain is unstructured in isolation, it has a stabilizing influence on the mature cystine knot domain and is involved in the binding to the Toll receptor. Here, we report the expression and refolding of Easter, and show that the renatured enzyme performs the activation cleavage of two Spätzle isoforms. We determine the affinity of the prodomain for the cystine knot domain, and show that Easter performs a previously unknown secondary cleavage in each prodomain.


Corresponding author: Milton T. Stubbs, Institut für Biochemie und Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Straße 3, D-06120 Halle (Saale), Germany; and Mitteldeutsches Zentrum für Struktur und Dynamik der Proteine, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Straße 3, D-06120 Halle (Saale), Germany

  1. 1

    Superscript residue numbers for Easter correspond to the chymotrypsin(ogen) numbering system for trypsin-like serine proteases (Shotton and Hartley, 1970)

The authors are grateful to Pia Rosenburg for technical assistance and Hauke Lilie and Andrea Sinz for valuable discussions. This work was supported by Deutsche Forschungsgemeinschaft (DFG) Grant SFB610 ‘Protein-Zustände mit Zellbiologischer und Medizinischer Relevanz’ to MTS.

References

Akiyama, T., Marques, G., and Wharton, K.A. (2012). A large bioactive BMP ligand with distinct signaling properties is produced by alternative proconvertase processing. Sci. Signal. 5, ra28.10.1126/scisignal.2002549Search in Google Scholar

Chasan, R. and Anderson, K.V. (1989). The role of easter, an apparent serine protease, in organizing the dorsal-ventral pattern of the Drosophila embryo. Cell 56, 391–400.10.1016/0092-8674(89)90242-0Search in Google Scholar

DeLotto, Y. and DeLotto, R. (1998). Proteolytic processing of the Drosophila Spatzle protein by easter generates a dimeric NGF-like molecule with ventralising activity. Mech. Dev. 72, 141–148.10.1016/S0925-4773(98)00024-0Search in Google Scholar

DeLotto, Y., Smith, C., and DeLotto, R. (2001). Multiple isoforms of the Drosophila Spatzle protein are encoded by alternatively spliced maternal mRNAs in the precellular blastoderm embryo. Mol. Gen. Genet. 264, 643–652.10.1007/s004380000350Search in Google Scholar

Dissing, M., Giordano, H., and DeLotto, R. (2001). Autoproteolysis and feedback in a protease cascade directing Drosophila dorsal-ventral cell fate. EMBO J. 20, 2387–2393.10.1093/emboj/20.10.2387Search in Google Scholar

Hoffmann, A., Funkner, A., Neumann, P., Juhnke, S., Walther, M., Schierhorn, A., Weininger, U., Balbach, J., Reuter, G., and Stubbs, M.T. (2008a). Biophysical characterization of refolded Drosophila Spätzle, a cystine knot protein, reveals distinct properties of three isoforms. J. Biol. Chem. 283, 32598–32609.10.1074/jbc.M801815200Search in Google Scholar

Hoffmann, A., Neumann, P., Schierhorn, A., and Stubbs, M.T. (2008b). Crystallization of Spätzle, a cystine-knot protein involved in embryonic development and innate immunity in Drosophila melanogaster. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 64, 707–710.10.1107/S1744309108018812Search in Google Scholar

Imler, J.L. and Hoffmann, J.A. (2001). Toll receptors in innate immunity. Trends Cell Biol. 11, 304–311.10.1016/S0962-8924(01)02004-9Search in Google Scholar

Jang, I.H., Chosa, N., Kim, S.H., Nam, H.J., Lemaitre, B., Ochiai, M., Kambris, Z., Brun, S., Hashimoto, C., Ashida, M., et al. (2006). A spatzle-processing enzyme required for toll signaling activation in Drosophila innate immunity. Dev. Cell 10, 45–55.10.1016/j.devcel.2005.11.013Search in Google Scholar PubMed

Kellenberger, C., Leone, P., Coquet, L., Jouenne, T., Reichhart, J.M., and Roussel, A. (2011). Structure-function analysis of grass clip serine protease involved in Drosophila Toll pathway activation. J. Biol. Chem. 286, 12300–12307.10.1074/jbc.M110.182741Search in Google Scholar PubMed PubMed Central

Kuhfahl, S., Hauburger, A., Thieme, T., Groppe, J., Ihling, C., Tomic, S., Schutkowski, M., Sinz, A., and Schwarz, E. (2011). Identification of a core domain within the proregion of bone morphogenetic proteins that interacts with the dimeric, mature domain. Biochem. Biophys. Res. Commun. 408, 300–305.10.1016/j.bbrc.2011.04.021Search in Google Scholar

Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M., and Hoffmann, J.A. (1996). The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983.10.1016/S0092-8674(00)80172-5Search in Google Scholar

LeMosy, E.K., Hong, C.C., and Hashimoto, C. (1999). Signal transduction by a protease cascade. Trends Cell Biol. 9, 102–107.10.1016/S0962-8924(98)01494-9Search in Google Scholar

Misra, S., Hecht, P., Maeda, R., and Anderson, K.V. (1998). Positive and negative regulation of Easter, a member of the serine protease family that controls dorsal-ventral patterning in the Drosophila embryo. Development 125, 1261–1267.10.1242/dev.125.7.1261Search in Google Scholar

Mizuguchi, K., Parker, J.S., Blundell, T.L., and Gay, N.J. (1998). Getting knotted: a model for the structure and activation of Spatzle. Trends Biochem. Sci. 23, 239–242.10.1016/S0968-0004(98)01216-XSearch in Google Scholar

Morisato, D. and Anderson, K.V. (1995). Signaling pathways that establish the dorsal-ventral pattern of the Drosophila embryo. Annu. Rev. Genet. 29, 371–399.10.1146/annurev.ge.29.120195.002103Search in Google Scholar

Nykjaer, A., Lee, R., Teng, K.K., Jansen, P., Madsen, P., Nielsen, M.S., Jacobsen, C., Kliemannel, M., Schwarz, E., Willnow, T.E., et al. (2004). Sortilin is essential for proNGF-induced neuronal cell death. Nature 427, 843–848.10.1038/nature02319Search in Google Scholar

Piao, S., Kim, S., Kim, J.H., Park, J.W., Lee, B.L., and Ha, N.C. (2007). Crystal structure of the serine protease domain of prophenoloxidase activating factor-I. J. Biol. Chem. 282, 10783–10791.10.1074/jbc.M611556200Search in Google Scholar

Rose, T., LeMosy, E.K., Cantwell, A.M., Banerjee-Roy, D., Skeath, J.B., and Di Cera, E. (2003). Three-dimensional models of proteases involved in patterning of the Drosophila Embryo. Crucial role of predicted cation binding sites. J. Biol. Chem. 278, 11320–11330.10.1074/jbc.M211820200Search in Google Scholar

Rudolph, R., Böhm, G., Lilie, H., and Jaenicke, R. (1997). In: Protein Function: A Practical Approach. T.E. Creighton, ed. (Oxford, UK: Oxford University Press), pp. 57–99.Search in Google Scholar

Schägger. H. and von Jagow, G. (1987). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166, 368–379.10.1016/0003-2697(87)90587-2Search in Google Scholar

Shotton, D.M. and Hartley, B.S. (1970). Amino-acid sequence of porcine pancreatic elastase and its homologies with other serine proteinases. Nature 225, 802–806.10.1038/225802a0Search in Google Scholar PubMed

Sreerama, N. and Woody, R.W. (2003). Structural composition of betaI- and betaII-proteins. Protein Sci. 12, 384–388.10.1110/ps.0235003Search in Google Scholar PubMed PubMed Central

Weber, A.N., Gangloff, M., Moncrieffe, M.C., Hyvert, Y., Imler, J.L., and Gay, N.J. (2007). Role of the Spatzle Pro-domain in the generation of an active toll receptor ligand. J. Biol. Chem. 282, 13522–13531.10.1074/jbc.M700068200Search in Google Scholar PubMed

Weber, A.N., Tauszig-Delamasure, S., Hoffmann, J.A., Lelievre, E., Gascan, H., Ray, K.P., Morse, M.A., Imler, J.L., and Gay, N.J. (2003). Binding of the Drosophila cytokine Spatzle to Toll is direct and establishes signaling. Nat. Immunol. 4, 794–800.10.1038/ni955Search in Google Scholar PubMed

Received: 2013-2-1
Accepted: 2013-5-14
Published Online: 2013-05-16
Published in Print: 2013-08-01

©2013 by Walter de Gruyter Berlin Boston

Articles in the same Issue

  1. Masthead
  2. Masthead
  3. Guest Editorial
  4. Highlight: Protein states with cell biological and medicinal relevance
  5. HIGHLIGHT: PROTEIN STATES WITH CELL BIOLOGICAL AND MEDICAL RELEVANCE
  6. Towards improved receptor targeting: anterograde transport, internalization and postendocytic trafficking of neuropeptide Y receptors
  7. Progress in demystification of adhesion G protein-coupled receptors
  8. The unresolved puzzle why alanine extensions cause disease
  9. Molecular function of the prolyl cis/trans isomerase and metallochaperone SlyD
  10. Structure and allosteric regulation of eukaryotic 6-phosphofructokinases
  11. Polyionic and cysteine-containing fusion peptides as versatile protein tags
  12. p0071/PKP4, a multifunctional protein coordinating cell adhesion with cytoskeletal organization
  13. Lysine-specific histone demethylase LSD1 and the dynamic control of chromatin
  14. Methylation of the nuclear poly(A)-binding protein by type I protein arginine methyltransferases – how and why
  15. Oxidative in vitro folding of a cysteine deficient variant of the G protein-coupled neuropeptide Y receptor type 2 improves stability at high concentration
  16. Identification of prolyl oligopeptidase as a cyclosporine-sensitive protease by screening of mouse liver extracts
  17. In vitro maturation of Drosophila melanogaster Spätzle protein with refolded Easter reveals a novel cleavage site within the prodomain
  18. Subcellular localization and RNP formation of IGF2BPs (IGF2 mRNA-binding proteins) is modulated by distinct RNA-binding domains
  19. High level expression of the Drosophila Toll receptor ectodomain and crystallization of its complex with the morphogen Spätzle
Downloaded on 1.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2013-0131/html
Scroll to top button