Home On Baer invariants of pairs of groups
Article
Licensed
Unlicensed Requires Authentication

On Baer invariants of pairs of groups

  • Behrooz Mashayekhy , Hanieh Mirebrahimi and Zohreh Vasagh EMAIL logo
Published/Copyright: December 14, 2016
Become an author with De Gruyter Brill

Abstract

In this paper, we use the theory of simplicial groups to generalize the Schur multiplier of a pair of groups (G,N) to its Baer invariant, đ’±âąM⁹(G,N), with respect to an arbitrary variety đ’±. Moreover, among other things we present some behaviors of Baer invariants of a pair of groups with respect to the free product and the direct limit. Finally, we prove that the nilpotent multiplier of a pair of groups does commute with the free product of finite groups of mutually coprime orders.

MSC 2010: 20E06; 20F18; 55U10

Acknowledgements

The authors would like to thank the referee for his/her thorough review and valuable suggestions on the improvement of the paper.

References

[1] R. Baer, Representations of groups as quotient groups. I, Trans. Amer. Math. Soc. 58 (1945), 295–347. 10.1090/S0002-9947-1945-0015106-XSearch in Google Scholar

[2] J. Barja and C. Rodreguez, Homology groups Hnq⁹(-) and eight-term exact sequences, Cahiers Topologie GĂ©om. DiffĂ©rentielle CatĂ©g. 31 (1990), no. 2, 91–120. Search in Google Scholar

[3] J. Burns and G. Ellis, On the nilpotent multipliers of a group, Math. Z. 226 (1997), no. 3, 405–428; erratum at G. Ellis’ homepage http://hamilton.ucg.ie/. 10.1007/PL00004348Search in Google Scholar

[4] E. B. Curtis, Simplicial homotopy theory, Adv. Math. 6 (1971), 107–209. 10.1016/0001-8708(71)90015-6Search in Google Scholar

[5] J. Duskin, Simplicial methods and the interpretation of “triple” cohomology, Mem. Amer. Math. Soc. 3 (1975), no. 163. 10.1090/memo/0163Search in Google Scholar

[6] B. Eckmann, P. J. Hilton and U. Stammbach, On the homology theory of central group extensions. I: The commutator map and stem extensions, Comment. Math. Helv. 47 (1972), 102–122. 10.1007/BF02566792Search in Google Scholar

[7] B. Eckmann, P. J. Hilton and U. Stammbach, On the homology theory of central group extensions. II: The exact sequence in the general case, Comment. Math. Helv. 47 (1972), 171–178. 10.1007/BF02566795Search in Google Scholar

[8] G. Ellis, The Schur multiplier of a pair of groups, Appl. Categ. Structures 6 (1998), no. 3, 355–371. 10.1023/A:1008652316165Search in Google Scholar

[9] L. Franco, Simplicial derivation, higher Baer invariants and homology of crossed modules, Comm. Algebra 26 (1998), no. 4, 1125–1139. 10.1080/00927879808826188Search in Google Scholar

[10] A. Fröhlich, Baer-invariants of algebras, Trans. Amer. Math. Soc. 109 (1963), 221–244. 10.1090/S0002-9947-1963-0158920-3Search in Google Scholar

[11] P. G. Goerss and J. F. Jardine, Simplicial Homotopy Theory, Progr. Math. 174, BirkhÀuser, Basel, 1999. 10.1007/978-3-0348-8707-6Search in Google Scholar

[12] H. Hopf, Fundamentalgruppe und zweite Bettische Gruppe, Comment. Math. Helv. 14 (1942), 257–309. 10.1007/BF02565622Search in Google Scholar

[13] H. N. Inasaridze, Homotopy of pseudosimplicial groups and nonabelian derived functors (in Russian), Soobshch. Akad. Nauk Grusin. SSR 76 (1974), 533–536. Search in Google Scholar

[14] C. R. Leedham-Green and S. McKay, Baer-invariants, isologism, varietal laws and homology, Acta Math. 137 (1976), no. 1–2, 99–150. 10.1007/BF02392415Search in Google Scholar

[15] A. S.-T. Lue, The Ganea map for nilpotent groups, J. Lond. Math. Soc. (2) 14 (1976), no. 2, 309–312. 10.1112/jlms/s2-14.2.309Search in Google Scholar

[16] B. Mashayekhy, H. Mirebrahimi and Z. Vasagh, A topological approach to the nilpotent multipliers of a free product, Georgian Math. J. 21 (2014), no. 1, 89–96. 10.1515/gmj-2014-0008Search in Google Scholar

[17] C. Miller, The second homology group of a group; relations among commutators, Proc. Amer. Math. Soc. 3 (1952), 588–595. 10.1090/S0002-9939-1952-0049191-5Search in Google Scholar

[18] H. Mirebrahimi and B. Mashayekhy, On Schur multipliers of pairs and triples of groups with topological approach, Iran. J. Math. Sci. Inform. 6 (2011), no. 2, 51–65. Search in Google Scholar

[19] M. R. R. Moghaddam, A. R. Salemkar and H. M. Saany, Some inequalities for the Baer-invariant of a pair of finite groups, Indag. Math. (N.S.) 18 (2007), no. 1, 73–82. 10.1016/S0019-3577(07)80008-5Search in Google Scholar

[20] J. C. Moore, Homotopie des complexes monoĂŻdaux, II, SĂ©minaire Henri Cartan 7 (1954/55), no. 2, 1–7. Search in Google Scholar

[21] M. R. Rismanchian and M. Araskhan, Some properties on the Baer-invariant of a pair of groups and VG-marginal series, Turkish J. Math. 37 (2013), no. 2, 259–266. 10.3906/mat-1010-86Search in Google Scholar

[22] D. J. S. Robinson, A Course in the Theory of Groups, 2nd ed., Grad. Texts in Math. 80, Springer, New York, 1996. 10.1007/978-1-4419-8594-1Search in Google Scholar

[23] J. J. Rotman, An Introduction to Homological Algebra, Pure Appl. Math. 85, Academic Press, New York, 1979. Search in Google Scholar

[24] I. Schur, Über die Darstellung der endlichen Gruppen durch gebrochen lineare Substitutionen, J. Reine Angew. Math. 127 (1904), 20–50. 10.1515/crll.1904.127.20Search in Google Scholar

Received: 2014-12-22
Accepted: 2015-05-14
Published Online: 2016-12-14
Published in Print: 2018-09-01

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 5.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/gmj-2016-0067/html
Scroll to top button