Home On the decomposition of solutions: From fractional diffusion to fractional Laplacian
Article
Licensed
Unlicensed Requires Authentication

On the decomposition of solutions: From fractional diffusion to fractional Laplacian

  • Yulong Li
Published/Copyright: October 28, 2021

Abstract

This paper investigates the structure of solutions to the BVP of a class of fractional ordinary differential equations involving both fractional derivatives (R-L or Caputo) and fractional Laplacian with variable coefficients. This family of equations generalize the usual fractional diffusion equation and fractional Laplace equation.

We provide a deep insight to the structure of the solutions shared by this family of equations. The specific decomposition of the solution is obtained, which consists of the “good” part and the “bad” part that precisely control the regularity and singularity, respectively. Other associated properties of the solution will be characterized as well.

References

[1] S.S. Bayin, On the consistency of the solutions of the space fractional Schrödinger equation. J. Math. Phys. 53, No 4 (2012), 1–9; DOI: 10.1063/1.4705268.10.1063/1.4705268Search in Google Scholar

[2] S.S. Bayin, Comment on "On the consistency of the solutions of the space fractional Schrödinger equation" [J. Math. Phys. 53, 042105 (2012)] [MR2953264]. J. Math. Phys. 54, No 7 (2013), 1–4; DOI: 10.1063/1.481600710.1063/1.4816007Search in Google Scholar

[3] D.A. Benson, R. Schumer, M.M. Meerschaert, and S.W. Wheatcraft, Fractional dispersion, Lévy motion, and the MADE tracer tests. Transp. Porous Media 42, No 1-2 (2001), 211–240; DOI: 10.1023/A:1006733002131.10.1023/A:1006733002131Search in Google Scholar

[4] D. A. Benson, S. W. Wheatcraft, and M. M. Meerschaert, The fractional-order governing equation of Lévy motion. Water Resources Research 36, No 6 (2000), 1413–1423.10.1029/2000WR900032Search in Google Scholar

[5] R.M. Blumenthal and R.K. Getoor, The asymptotic distribution of the eigenvalues for a class of Markov operators. Pacific J. Math. 9 (1959), 399–408.10.2140/pjm.1959.9.399Search in Google Scholar

[6] A. Buades, B. Coll, and J.M. Morel, Image denoising methods. A new nonlocal principle. SIAM Rev. 52 (2010), 113–147; DOI: 10.1137/090773908.10.1137/090773908Search in Google Scholar

[7] B. Carmichael, H. Babahosseini, S. Mahmoodi, and M. Agah, The fractional viscoelastic response of human breast tissue cells. Physical Biology 12, No 4 (2015).10.1088/1478-3975/12/4/046001Search in Google Scholar PubMed

[8] H. Chen and H. Wang, Numerical simulation for conservative fractional diffusion equations by an expanded mixed formulation. J. Comput. Appl. Math. 296 (2016), 480–498; DOI: 10.1016/j.cam.2015.09.022.10.1016/j.cam.2015.09.022Search in Google Scholar

[9] Z.-Q. Chen, M.M. Meerschaert, and E. Nane, Space-time fractional diffusion on bounded domains. J. Math. Anal. Appl. 393, No 2 (2012), 479–488; DOI: 10.1016/j.jmaa.2012.04.032.10.1016/j.jmaa.2012.04.032Search in Google Scholar

[10] Z.-Q. Chen, and R. Song, Two-sided eigenvalue estimates for subordinate processes in domains. J. Funct. Anal. 226, No 1 (2005), 90–113; DOI: 10.1016/j.jfa.2005.05.004.10.1016/j.jfa.2005.05.004Search in Google Scholar

[11] Z.-Q. Chen, and R. Song, Continuity of eigenvalues of subordinate processes in domains. Math. Z. 252, No 1 (2006), 71–89; DOI: 10.1007/s00209-005-0845-2.10.1007/s00209-005-0845-2Search in Google Scholar

[12] D. Del Castillo-Negrete, B. Carreras, and V. Lynch, Fractional diffusion in plasma turbulence. Physics of Plasmas 11, No 8 (2004), 3854–3864.10.1063/1.1767097Search in Google Scholar

[13] E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, No 15 (2012), 521–573; DOI: 10.1016/j.bulsci.2011.12.004.10.1016/j.bulsci.2011.12.004Search in Google Scholar

[14] B.P. Epps and B. Cushman-Roisin, Turbulence modeling via the fractional Laplacian. arXiv:1803.05286.Search in Google Scholar

[15] V.J. Ervin, Regularity of the solution to fractional diffusion, advection, reaction equations in weighted Sobolev spaces. J. Differential Equations 278 (2021), 294–325; DOI: 10.1016/j.jde.2020.12.034.10.1016/j.jde.2020.12.034Search in Google Scholar

[16] V.J. Ervin, N. Heuer, and J.P. Roop, Regularity of the solution to 1-D fractional order diffusion equations. Math. Comp. 87, No 313 (2018), 2273–2294; DOI: 10.1090/mcom/3295.10.1090/mcom/3295Search in Google Scholar

[17] V.J. Ervin and J.P. Roop, Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22, No 3 (2006), 558–576.10.1002/num.20112Search in Google Scholar

[18] V.J. Ervin and J.P. Roop, Variational solution of fractional advection dispersion equations on bounded domains in ℝd. Numer. Methods Partial Differential Equations 23, No 2 (2007), 256–281; DOI: 10.1002/num.20169.10.1002/num.20169Search in Google Scholar

[19] L.C. Evans, Partial Differential Equations. American Mathematical Society, Providence, RI (2010).Search in Google Scholar

[20] G.B. Folland, Real Analysis. John Wiley & Sons, Inc., New York (1999).Search in Google Scholar

[21] F.D. Gakhov, Boundary Value Problems. Transl. Ed. by I.N. Sneddon. Pergamon Press, Oxford-New York-Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass.-London (1999).Search in Google Scholar

[22] G. Gilboa and S. Osher, Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7, No 3 (2008), 1005–1028; DOI: 10.1137/070698592.10.1137/070698592Search in Google Scholar

[23] V. Ginting and Y. Li, On the fractional diffusion-advection-reaction equation in ℝ. Fract. Calc. Appl. Anal. 22, No 4 (2019), 1039–1062; DOI: 10.1515/fca-2019-0055; https://www.degruyter.com/journal/key/fca/22/4/html.10.1515/fca-2019-0055Search in Google Scholar

[24] G. Grubb, Distributions and Operators. Springer, New York (2009).Search in Google Scholar

[25] Z. Hao, G. Lin, and Z. Zhang, Error estimates of a spectral Petrov-Galerkin method for two-sided fractional reaction-diffusion equations. Appl. Math. Comput. 374 (2020), 1–13; DOI: 10.1016/j.amc.2020.125045.10.1016/j.amc.2020.125045Search in Google Scholar

[26] Z. Hao and Z. Zhang, Optimal regularity and error estimates of a spectral Galerkin method for fractional advection-diffusion-reaction equations. SIAM J. Numer. Anal. 58, No 1 (2020), 211–233; DOI: 10.1137/18M1234679.10.1137/18M1234679Search in Google Scholar

[27] Y. Hatano and N. Hatano, Dispersive transport of ions in column experiments: An explanation of long-tailed profiles. Water Resources Research 34, No 5 (1998), 1027–1033.10.1029/98WR00214Search in Google Scholar

[28] F. Höfling and T. Franosch, Anomalous transport in the crowded world of biological cells. Rep. Progr. Phys. 76, No 4 (2013), 1–50; DOI: 10.1088/0034-4885/76/4/046602.10.1088/0034-4885/76/4/046602Search in Google Scholar PubMed

[29] M. Jeng, S.-L.-Y. Xu, E. Hawkins, and J.M. Schwarz, On the nonlocality of the fractional Schrödinger equation. J. Math. Phys. 51, No 6, 062102 (2010), 1–6; DOI: 10.1063/1.3430552.10.1063/1.3430552Search in Google Scholar

[30] B. Jin, R. Lazarov, X. Lu, and Z. Zhou, A simple finite element method for boundary value problems with a Riemann-Liouville derivative. J. Comput. Appl. Math. 293 (2016), 94–111; DOI: 10.1016/j.cam.2015.02.058.10.1016/j.cam.2015.02.058Search in Google Scholar

[31] B. Jin, R. Lazarov, X. Lu, J. Pasciak, and W. Rundell, Variational formulation of problems involving fractional order differential operators. Math. Comp. 84, No 296 (2015), 2665–2700; DOI: 10.1090/mcom/2960.10.1090/mcom/2960Search in Google Scholar

[32] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier Science B.V., Amsterdam (2006).Search in Google Scholar

[33] M. Kwaśnicki, Eigenvalues of the fractional Laplace operator in the interval. J. Funct. Anal. 262, No 5 (2012), 2379–2402; DOI: 10.1016/j.jfa.2011.12.004.10.1016/j.jfa.2011.12.004Search in Google Scholar

[34] M. Kwaśnicki, Ten equivalent definitions of the fractional Laplace operator. Fract. Calc. Appl. Anal. 20, No 1 (2017), 7–51; DOI: 10.1515/fca-2017-0002; https://www.degruyter.com/journal/key/fca/20/1/html.10.1515/fca-2017-0002Search in Google Scholar

[35] N.S. Landkof, Foundations of Modern Potential Theory. Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag, New York-Heidelberg (1972).10.1007/978-3-642-65183-0Search in Google Scholar

[36] Y. Li, Integral representation bound of the true solution to the BVP of double-sided fractional diffusion advection reaction equation. Rend. Circ. Mat. Palermo, II. Ser (2021), DOI: 10.1007/s12215-021-00592-z.10.1007/s12215-021-00592-zSearch in Google Scholar

[37] Y. Li, Raising the regularity of generalized Abel equations in fractional Sobolev spaces with homogeneous boundary conditions. J. Integral Equations Applications (In press).10.1216/jie.2021.33.327Search in Google Scholar

[38] Y. Li, On Fractional Differential Equations and Related Questions, Thesis (Ph.D.) – University of Wyoming. ProQuest LLC, Ann Arbor, MI (2019).Search in Google Scholar

[39] Y. Li, A note on generalized Abel equations with constant coefficients. Rocky Mountain J. Math. (In press).10.1216/rmj.2021.51.1749Search in Google Scholar

[40] Y. Li, On the skewed fractional diffusion advection reaction equation on the interval. arXiv:2005.04405.Search in Google Scholar

[41] Y. Li, H. Chen, and H. Wang, A mixed-type Galerkin variational formulation and fast algorithms for variable-coefficient fractional diffusion equations. Math. Methods Appl. Sci. 40, No 14 (2017), 5018–5034; DOI: 10.1002/mma.4367.10.1002/mma.4367Search in Google Scholar

[42] A. Lischke, G. Pang, M. Gulian, and et al., What is the fractional Laplacian? A comparative review with new results. J. Comput. Phys. 404, 109009 (2020), 1–62; DOI: 10.1016/j.jcp.2019.109009.10.1016/j.jcp.2019.109009Search in Google Scholar

[43] Y. Luchko, Fractional Schrödinger equation for a particle moving in a potential well. J. Math. Phys. 54, No 1, 012111 (2013), 1–10; DOI: 10.1063/1.4777472.10.1063/1.4777472Search in Google Scholar

[44] F. Mainardi, Fractional calculus: some basic problems in continuum and statistical mechanics. In: Fractals and Fractional Calculus in Continuum Mechanics (Udine, 1996) 378, Springer, Vienna (1997), 291–348; DOI: 10.1007/978-3-7091-2664-6_7.10.1007/978-3-7091-2664-6_7Search in Google Scholar

[45] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity (An Introduction to Mathematical Models). Worls Sci. - Imperial College Press, London (2010).10.1142/p614Search in Google Scholar

[46] Z. Mao and G.E. Karniadakis, A spectral method (of exponential convergence) for singular solutions of the diffusion equation with general two-sided fractional derivative. SIAM J. Numer. Anal. 56, No 1 (2018), 24–49; DOI: 10.1137/16M1103622.10.1137/16M1103622Search in Google Scholar

[47] B.M. McCay, M.N.L. Narasimhan, Theory of nonlocal electromagnetic fluids. Arch. Mech. (Arch. Mech. Stos.) 33, No 3 (1981), 365–384.Search in Google Scholar

[48] R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, No 1 (2000), 1–77; DOI: 10.1016/S0370-1573(00)00070-3.10.1016/S0370-1573(00)00070-3Search in Google Scholar

[49] X. Ros-Oton, Nonlocal elliptic equations in bounded domains: a survey. Publ. Mat. 60, No 1 (2016), 3–26.10.5565/PUBLMAT_60116_01Search in Google Scholar

[50] X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. (9) 101, No 3 (2014), 275–302; DOI: 10.1016/j.matpur.2013.06.003.10.1016/j.matpur.2013.06.003Search in Google Scholar

[51] S. G. Samko, A new approach to the inversion of the Riesz potential operator. Fract. Calc. Appl. Anal. 1, No 3 (1998), 225–245.Search in Google Scholar

[52] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives. Gordon and Breach Science Publishers, Yverdon (1993).Search in Google Scholar

[53] K. Saĭevand and K. Pichagkhi, Reanalysis of an open problem associated with the fractional Schrödinger equation. Teoret. Mat. Fiz. 192, No 1 (2017), 103–114; DOI: 10.4213/tmf9224.10.4213/tmf9224Search in Google Scholar

[54] M.F. Shlesinger, B.J. West and J. Klafter, Lévy dynamics of enhanced diffusion: application to turbulence. Phys. Rev. Lett. 58, No 11 (1987), 1100–1103; DOI: 10.1103/PhysRevLett.58.1100.10.1103/PhysRevLett.58.1100Search in Google Scholar PubMed

[55] D.W. Sims, E.J. Southford, N.E. Humphries, G.C. Hays, C.J. Bradshaw, J.W. Pitchford, A. James, M.Z. Ahmed, A.S. Brierley, M.A. Hindell, et al., Scaling laws of marine predator search behaviour. Nature 451, No 7182 (2008), 1098–1102.10.1038/nature06518Search in Google Scholar PubMed

[56] E.M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Ser. No. 30, Princeton University Press, Princeton, N.J. (1970).Search in Google Scholar

[57] M. Stynes, Too much regularity may force too much uniqueness. Fract. Calc. Appl. Anal. 19, No 6 (2016), 1554–1562; DOI: 10.1515/fca-2016-0080; https://www.degruyter.com/journal/key/fca/19/6/html.10.1515/fca-2016-0080Search in Google Scholar

[58] L. Tartar, An Introduction to Sobolev Spaces and Interpolation Spaces. Springer, Berlin; UMI, Bologna (2007).Search in Google Scholar

[59] H. Wang and D. Yang, Wellposedness of variable-coefficient conservative fractional elliptic differential equations. SIAM J. Numer. Anal. 51, No 2 (2013), 1088-1107; DOI: 10.1137/120892295.10.1137/120892295Search in Google Scholar

[60] H. Wang, D. Yang, and S. Zhu, Accuracy of finite element methods for boundary-value problems of steady-state fractional diffusion equations. J. Sci. Comput. 70, No 1 (2017), 429–449; DOI: 10.1007/s10915-016-0196-7.10.1007/s10915-016-0196-7Search in Google Scholar

[61] H. Wang and X. Zhang, A high-accuracy preserving spectral Galerkin method for the Dirichlet boundary-value problem of variable-coefficient conservative fractional diffusion equations. J. Comput. Phys. 281 (2017), 67–81; DOI: 10.1016/j.jcp.2014.10.018.10.1016/j.jcp.2014.10.018Search in Google Scholar

[62] G.M. Zaslavsky, D. Stevens, and H. Weitzner, Self-similar transport in incomplete chaos. Phys. Rev. E (3) 48, No 3 (1993), 1683–1694; DOI: 10.1103/PhysRevE.48.1683.10.1103/PhysRevE.48.1683Search in Google Scholar

[63] Y. Zhang, D.A. Benson, M.M. Meerschaert, and E.M. LaBolle, Space-fractional advection-dispersion equations with variable parameters: Diverse formulas, numerical solutions, and application to the Macrodispersion Experiment site data. Water Resources Research 43, No 5 (2007).10.1029/2006WR004912Search in Google Scholar

[64] Z. Zhang, Error estimates of spectral Galerkin methods for a linear fractional reaction-diffusion equation. J. Sci. Comput. 78, No 2 (2019), 1087–1110; DOI: 10.1007/s10915-018-0800-0.10.1007/s10915-018-0800-0Search in Google Scholar

[65] X. Zheng, V. Ervin, and H. Wang, Optimal Petrov-Galerkin spectral approximation method for the fractional diffusion, advection, reaction equation on a bounded interval. J. Sci. Comput. 86, No 3 (2021), DOI: 10.1007/s10915-020-01366-y.10.1007/s10915-020-01366-ySearch in Google Scholar

[66] X. Zheng, V. Ervin, and H. Wang, Wellposedness of the two-sided variable coefficient Caputo flux fractional diffusion equation and error estimate of its spectral approximation. Appl. Numer. Math. 153 (2019), 234–247; DOI: 10.1016/j.apnum.2020.02.019.10.1016/j.apnum.2020.02.019Search in Google Scholar

[67] X. Zheng, V. Ervin, and H. Wang, Spectral approximation of a variable coefficient fractional diffusion equation in one space dimension. Appl. Math. Comput. 361 (2019), 98–111; DOI: 10.1016/j.amc.2019.05.017.10.1016/j.amc.2019.05.017Search in Google Scholar

Received: 2021-02-21
Revised: 2021-09-24
Published Online: 2021-10-28
Published in Print: 2021-10-26

© 2021 Diogenes Co., Sofia

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/fca-2021-0066/html
Scroll to top button