Abstract
Rudin’s version of the classical Julia–Wolff–Carathéodory theorem is a cornerstone of holomorphic function theory in the unit ball of
Funding source: Ministero dell’Università e della Ricerca
Award Identifier / Grant number: 2022AP8HZ9
Award Identifier / Grant number: E83C23000330006
Funding source: European Research Council
Award Identifier / Grant number: 101053085
Funding source: Javna Agencija za Raziskovalno Dejavnost RS
Award Identifier / Grant number: P1-0291
Funding statement: Leandro Arosio was partially supported by INdAM, by PRIN Real and Complex Manifolds: Geometry and Holomorphic Dynamics n. 2022AP8HZ9, and by the MUR Excellence Department Project MatMod@TOV CUP: E83C23000330006. Matteo Fiacchi was partially supported by the European Union (ERC Advanced grant HPDR, 101053085 to Franc Forstnerič), the research program P1-0291 from ARIS, Republic of Slovenia, and by the MUR Excellence Department Project MatMod@TOV CUP: E83C23000330006.
Acknowledgements
We want to thank the anonymous referee for the careful reading of the paper and for many useful comments.
References
[1] M. Abate, Common fixed points of commuting holomorphic maps, Math. Ann. 283 (1989), no. 4, 645–655. 10.1007/BF01442858Search in Google Scholar
[2] M. Abate, Iteration theory of holomorphic maps on taut manifolds, Res. Lecture Notes Math. Complex Anal. Geom., Mediterranean Press, Rende 1989. Search in Google Scholar
[3] M. Abate, The Lindelöf principle and the angular derivative in strongly convex domains, J. Anal. Math. 54 (1990), 189–228. 10.1007/BF02796148Search in Google Scholar
[4] M. Abate, Angular derivatives in strongly pseudoconvex domains, Several complex variables and complex geometry, Part 2, Proc. Sympos. Pure Math. 52, American Mathematical Society, Providence (1991), 23–40. 10.1090/pspum/052.2/1128532Search in Google Scholar
[5] M. Abate, The Julia–Wolff–Carathéodory theorem in polydisks, J. Anal. Math. 74 (1998), 275–306. 10.1007/BF02819453Search in Google Scholar
[6] M. Abate, Angular derivatives in several complex variables, Real methods in complex and CR geometry, Lecture Notes in Math. 1848, Springer, Berlin (2004), 1–47. 10.1007/978-3-540-44487-9_1Search in Google Scholar
[7] M. Abate and J. Raissy, A Julia–Wolff–Carathéodory theorem for infinitesimal generators in the unit ball, Trans. Amer. Math. Soc. 368 (2016), no. 8, 5415–5431. 10.1090/tran/6535Search in Google Scholar
[8] M. Abate and R. Tauraso, The Lindelöf principle and angular derivatives in convex domains of finite type, J. Aust. Math. Soc. 73 (2002), no. 2, 221–250. 10.1017/S1446788700008818Search in Google Scholar
[9] A. Altavilla, L. Arosio and L. Guerini, Canonical models on strongly convex domains via the squeezing function, J. Geom. Anal. 31 (2021), no. 5, 4661–4702. 10.1007/s12220-020-00448-5Search in Google Scholar
[10] L. Arosio, F. Bracci and M. Fiacchi, The pluricomplex Poisson kernel for convex domains of finite type, in preparation. Search in Google Scholar
[11] L. Arosio, G. M. Dall’Ara and M. Fiacchi, Worm domains are not Gromov hyperbolic, J. Geom. Anal. 33 (2023), no. 8, Paper No. 257. 10.1007/s12220-023-01320-ySearch in Google Scholar PubMed PubMed Central
[12] L. Arosio, M. Fiacchi, S. Gontard and L. Guerini, The horofunction boundary of a Gromov hyperbolic space, Math. Ann. 388 (2024), no. 2, 1163–1204. 10.1007/s00208-022-02551-0Search in Google Scholar
[13] L. Arosio, M. Fiacchi, L. Guerini and A. Karlsson, Backward dynamics of non-expanding maps in Gromov hyperbolic metric spaces, Adv. Math. 439 (2024), Article ID 109484. 10.1016/j.aim.2023.109484Search in Google Scholar
[14] Z. M. Balogh and M. Bonk, Gromov hyperbolicity and the Kobayashi metric on strictly pseudoconvex domains, Comment. Math. Helv. 75 (2000), no. 3, 504–533. 10.1007/s000140050138Search in Google Scholar
[15] T. J. Barth, Convex domains and Kobayashi hyperbolicity, Proc. Amer. Math. Soc. 79 (1980), no. 4, 556–558. 10.1090/S0002-9939-1980-0572300-3Search in Google Scholar
[16] G. Bharali and A. Zimmer, Goldilocks domains, a weak notion of visibility, and applications, Adv. Math. 310 (2017), 377–425. 10.1016/j.aim.2017.02.005Search in Google Scholar
[17]
H. P. Boas and E. J. Straube,
On equality of line type and variety type of real hypersurfaces in
[18] F. Bracci, M. D. Contreras and S. Díaz-Madrigal, Pluripotential theory, semigroups and boundary behavior of infinitesimal generators in strongly convex domains, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 1, 23–53. 10.4171/jems/188Search in Google Scholar
[19]
F. Bracci, H. Gaussier and A. Zimmer,
Homeomorphic extension of quasi-isometries for convex domains in
[20] F. Bracci, N. Nikolov and P. J. Thomas, Visibility of Kobayashi geodesics in convex domains and related properties, Math. Z. 301 (2022), no. 2, 2011–2035. 10.1007/s00209-022-02978-wSearch in Google Scholar
[21] F. Bracci and G. Patrizio, Monge-Ampère foliations with singularities at the boundary of strongly convex domains, Math. Ann. 332 (2005), no. 3, 499–522. 10.1007/s00208-005-0633-7Search in Google Scholar
[22] F. Bracci, G. Patrizio and S. Trapani, The pluricomplex Poisson kernel for strongly convex domains, Trans. Amer. Math. Soc. 361 (2009), no. 2, 979–1005. 10.1090/S0002-9947-08-04549-2Search in Google Scholar
[23] F. Bracci and A. Saracco, Hyperbolicity in unbounded convex domains, Forum Math. 21 (2009), no. 5, 815–825. 10.1515/FORUM.2009.039Search in Google Scholar
[24] F. Bracci, A. Saracco and S. Trapani, The pluricomplex Poisson kernel for strongly pseudoconvex domains, Adv. Math. 380 (2021), Article ID 107577. 10.1016/j.aim.2021.107577Search in Google Scholar
[25] F. Bracci and D. Shoikhet, Boundary behavior of infinitesimal generators in the unit ball, Trans. Amer. Math. Soc. 366 (2014), no. 2, 1119–1140. 10.1090/S0002-9947-2013-05996-XSearch in Google Scholar
[26] M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Grundlehren Math. Wiss. 319, Springer, Berlin 1999. 10.1007/978-3-662-12494-9Search in Google Scholar
[27] C. Carathéodory, Über die Winkelderivierten von beschränkten analytischen Funktionen, Sitzungsber, Preuss. Akad. Wiss. Berlin 1929 (1929), 39–54. Search in Google Scholar
[28] D. Catlin, Boundary invariants of pseudoconvex domains, Ann. of Math. (2) 120 (1984), no. 3, 529–586. 10.2307/1971087Search in Google Scholar
[29]
D. Catlin,
Subelliptic estimates for the
[30]
E. M. Čirka,
The Lindelöf and Fatou theorems in
[31] M. Coornaert, T. Delzant and A. Papadopoulos, Géométrie et théorie des groupes, Lecture Notes in Math. 1441, Springer, Berlin 1990. 10.1007/BFb0084913Search in Google Scholar
[32] J. P. D’Angelo, Real hypersurfaces, orders of contact, and applications, Ann. of Math. (2) 115 (1982), no. 3, 615–637. 10.2307/2007015Search in Google Scholar
[33] J. P. D’Angelo, Several complex variables and the geometry of real hypersurfaces, Stud. Adv. Math., CRC Press, Boca Raton 2019. 10.1201/9780203739785Search in Google Scholar
[34] K. Diederich and J. E. Fornaess, Pseudoconvex domains with real-analytic boundary, Ann. of Math. (2) 107 (1978), no. 2, 371–384. 10.2307/1971120Search in Google Scholar
[35]
M. Fiacchi,
Gromov hyperbolicity of pseudoconvex finite type domains in
[36] H. Gaussier, Characterization of convex domains with noncompact automorphism group, Michigan Math. J. 44 (1997), no. 2, 375–388. 10.1307/mmj/1029005712Search in Google Scholar
[37]
H. Gaussier and H. Seshadri,
On the Gromov hyperbolicity of convex domains in
[38] H. Gaussier and A. Zimmer, The space of convex domains in complex Euclidean space, J. Geom. Anal. 30 (2020), no. 2, 1312–1358. 10.1007/s12220-019-00346-5Search in Google Scholar
[39] I. Graham, Sharp constants for the Koebe theorem and for estimates of intrinsic metrics on convex domains, Several complex variables and complex geometry, Part 2, Proc. Sympos. Pure Math. 52, American Mathematical Society, Providence (1991), 233–238. 10.1090/pspum/052.2/1128547Search in Google Scholar
[40] L. A. Harris, Schwarz–Pick systems of pseudometrics for domains in normed linear spaces, Advances in holomorphy, Notas Mat. 65, North-Holland, Amsterdam (1979), 345–406. 10.1016/S0304-0208(08)70766-7Search in Google Scholar
[41] X. J. Huang, A boundary rigidity problem for holomorphic mappings on some weakly pseudoconvex domains, Canad. J. Math. 47 (1995), no. 2, 405–420. 10.4153/CJM-1995-022-3Search in Google Scholar
[42] M. Jarnicki and P. Pflug, Invariant distances and metrics in complex analysis, De Gruyter Exp. Math. 9, Walter de Gruyter, Berlin 2013. 10.1515/9783110253863Search in Google Scholar
[43] M. Jarnicki, P. Pflug and R. Zeinstra, Geodesics for convex complex ellipsoids, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 20 (1993), no. 4, 535–543. Search in Google Scholar
[44] G. Julia, Extension nouvelle d’un lemme de Schwarz, Acta Math. 42 (1920), no. 1, 349–355. 10.1007/BF02404416Search in Google Scholar
[45] S. Kobayashi, Hyperbolic complex spaces, Grundlehren Math. Wiss. 318, Springer, Berlin 1998. 10.1007/978-3-662-03582-5Search in Google Scholar
[46]
J. J. Kohn,
Subellipticity of the
[47] A. Korányi, Harmonic functions on Hermitian hyperbolic space, Trans. Amer. Math. Soc. 135 (1969), 507–516. 10.1090/S0002-9947-1969-0277747-0Search in Google Scholar
[48] A. Korányi and E. M. Stein, Fatou’s theorem for generalized halfplanes, Ann. Sc. Norm. Super. Pisa Cl. Sci. (3) 22 (1968), 107–112. Search in Google Scholar
[49] L. Kosiński, N. Nikolov and A. Y. Ökten, Precise estimates of invariant distances on strongly pseudoconvex domains, Adv. Math. 478 (2025), Article ID 110388. 10.1016/j.aim.2025.110388Search in Google Scholar
[50]
S. G. Krantz,
Invariant metrics and the boundary behavior of holomorphic functions on domains in
[51] L. Lee, Asymptotic behavior of the Kobayashi metric on convex domains, Pacific J. Math. 238 (2008), no. 1, 105–118. 10.2140/pjm.2008.238.105Search in Google Scholar
[52] J. D. McNeal, Convex domains of finite type, J. Funct. Anal. 108 (1992), no. 2, 361–373. 10.1016/0022-1236(92)90029-ISearch in Google Scholar
[53]
P. R. Mercer,
Complex geodesics and iterates of holomorphic maps on convex domains in
[54] N. Nikolov, A. Y. Ökten and P. J. Thomas, Local and global notions of visibility with respect to Kobayashi distance: A comparison, Ann. Polon. Math. 132 (2024), no. 2, 169–185. 10.4064/ap230522-18-12Search in Google Scholar
[55] N. Nikolov, P. Pflug and W. Zwonek, Estimates for invariant metrics on ℂ-convex domains, Trans. Amer. Math. Soc. 363 (2011), no. 12, 6245–6256. 10.1090/S0002-9947-2011-05273-6Search in Google Scholar
[56] J. Raissy, The Julia–Wolff–Carathéodory theorem and its generalizations, Complex analysis and geometry, Springer Proc. Math. Stat. 144, Springer, Tokyo (2015), 281–293. 10.1007/978-4-431-55744-9_21Search in Google Scholar
[57] R. M. Range, Holomorphic functions and integral representations in several complex variables, Grad. Texts in Math. 108, Springer, New York 1986. 10.1007/978-1-4757-1918-5Search in Google Scholar
[58] H. L. Royden, Remarks on the Kobayashi metric, Several complex variables, II, Lecture Notes in Math. 185, Springer, Berlin (1971), 125–137. 10.1007/BFb0058768Search in Google Scholar
[59]
W. Rudin,
Function theory in the unit ball of
[60] E. M. Stein, Boundary behavior of holomorphic functions of several complex variables, Math. Notes 11, Princeton University, Princeton 1972. Search in Google Scholar
[61] J. Wolff, Sur une généralisation d’un théorème de Schwarz, C.R. Acad. Sci. Paris 183 (1926), 500–502. Search in Google Scholar
[62] J. Y. Yu, Multitypes of convex domains, Indiana Univ. Math. J. 41 (1992), no. 3, 837–849. 10.1512/iumj.1992.41.41044Search in Google Scholar
[63] A. Zimmer, Gromov hyperbolicity and the Kobayashi metric on convex domains of finite type, Math. Ann. 365 (2016), no. 3–4, 1425–1498. 10.1007/s00208-015-1278-9Search in Google Scholar
[64] A. Zimmer, Subelliptic estimates from Gromov hyperbolicity, Adv. Math. 402 (2022), Article ID 108334. 10.1016/j.aim.2022.108334Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- On the Tate conjecture for divisors on varieties with ℎ2,0 = 1 in positive characteristics
- The Julia–Wolff–Carathéodory theorem in convex finite type domains
- The plectic conjecture over local fields
- Arveson’s version of the Gauss–Bonnet–Chern formula for Hilbert modules over the polynomial ring
- On Gromov’s rigidity theorem for polytopes with acute angles
- Topological and geometric restrictions on hyperconvex representations
- Universal central extension of the Lie algebra of exact divergence-free vector fields
- Formal GAGA for gerbes
- On Kähler manifolds with non-negative mixed curvature
Articles in the same Issue
- Frontmatter
- On the Tate conjecture for divisors on varieties with ℎ2,0 = 1 in positive characteristics
- The Julia–Wolff–Carathéodory theorem in convex finite type domains
- The plectic conjecture over local fields
- Arveson’s version of the Gauss–Bonnet–Chern formula for Hilbert modules over the polynomial ring
- On Gromov’s rigidity theorem for polytopes with acute angles
- Topological and geometric restrictions on hyperconvex representations
- Universal central extension of the Lie algebra of exact divergence-free vector fields
- Formal GAGA for gerbes
- On Kähler manifolds with non-negative mixed curvature