Startseite Mathematik On Kähler manifolds with non-negative mixed curvature
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On Kähler manifolds with non-negative mixed curvature

  • Jianchun Chu EMAIL logo , Man-Chun Lee und Jintian Zhu
Veröffentlicht/Copyright: 21. August 2025

Abstract

In this work, we investigate compact Kähler manifolds with non-negative or quasi-positive mixed curvature coming from a linear combination of the Ricci and holomorphic sectional curvature, which covers various notions of curvature considered in the literature. Specifically, we prove a splitting theorem, analogous to the Cheeger–Gromoll splitting theorem, for complete Kähler manifolds with non-negative mixed curvature containing a line, and then establish a structure theorem for compact Kähler manifolds with non-negative mixed curvature. We also show that the Hodge numbers of compact Kähler manifolds with quasi-positive mixed curvature must vanish. Both results are based on the conformal perturbation method.

Award Identifier / Grant number: 2024YFA1014800

Award Identifier / Grant number: 2023YFA1009900

Award Identifier / Grant number: 12471052

Award Identifier / Grant number: 12271008

Award Identifier / Grant number: 12222122

Award Identifier / Grant number: 24304222

Award Identifier / Grant number: 14300623

Funding statement: The first-named author was partially supported by National Key R&D Program of China 2024YFA1014800 and 2023YFA1009900, and NSFC grants 12471052 and 12271008. The second-named author was partially supported by Hong Kong RGC grant (Early Career Scheme) of Hong Kong No. 24304222, No. 14300623, and an NSFC grant No. 12222122. The third-named author was partially supported by National Key R&D Program of China 2023YFA1009900 as well as the startup fund from Westlake University.

A Conformal calculation

Lemma A.1

Let ( M n , g , J ) be a Kähler manifold and suppose that g ̂ = e 2 h g for some f C ( M ) . Then the following holds.

  1. | ̂ J | g ̂ 2 C n e 2 h | h | g 2 for some dimensional constant C n .

  2. For 𝑔-unit vector 𝑣, define g ̂ -unit vector v ̂ = e h v . Then

    C α , β , g ̂ ( v ̂ ) = e 2 h ( C α , β , g ( v ) + α Δ h + ( 2 n α 2 α + β ) 2 h ( v , v ) + β 2 h ( J v , J v ) + ( 2 n α 2 α + β ) v ( h ) 2 + β J v ( h ) 2 ( 2 n α 2 α + β ) | h | 2 ) .

Here ̂ denotes the Levi-Civita connection of g ̂ and C α , β , g ̂ denotes the mixed curvature of g ̂ defined in Definition 2.1.

Proof

Denote the curvature and Ricci tensor of g ̂ by R ̂ and Ric ̂ . For any 𝑔-unit vector 𝑤, define the g ̂ -unit vector w ̂ = e h w . Direct calculation shows

̂ v w v w = v ( h ) w w ( h ) v + g ( v , w ) h

and so

̂ v ̂ w ̂ = ̂ e h v ( e h w ) = e 2 h ( v ( h ) w + ̂ v w ) = e 2 h ( v w w ( h ) v + g ( v , w ) h ) .

Replacing w ̂ by J w ̂ , ̂ v ̂ ( J w ̂ ) = e 2 h ( v ( J w ) J w ( h ) v + g ( v , J w ) h ) . We compute

( ̂ v ̂ J ) w ̂ = ̂ v ̂ ( J w ̂ ) J ( ̂ v ̂ w ̂ ) = e 2 h ( v ( J w ) J w ( h ) v + g ( v , J w ) h ) e 2 h J ( v w w ( h ) v + g ( v , w ) h ) = e 2 h ( ( v J ) w J w ( h ) v + g ( v , J w ) h + w ( h ) J v g ( v , w ) J h ) .

Combining this with J = 0 (which follows from the Kählerity of 𝑔), we obtain (a).

For (b), when g ( v , w ) = 0 , it is well known that

R ̂ ( v ̂ , w ̂ , w ̂ , v ̂ ) = e 2 h ( R ( v , w , w , v ) + 2 h ( v , v ) + 2 h ( w , w ) + v ( h ) 2 + w ( h ) 2 | h | 2 ) .

It then follows that

Ric ̂ ( v ̂ , v ̂ ) = e 2 h ( Ric ( v , v ) + Δ h + ( 2 n 2 ) 2 h ( v , v ) ( 2 n 2 ) | h | 2 + ( 2 n 2 ) v ( h ) 2 )

and

R ̂ ( v ̂ , J v ̂ , J v ̂ , v ̂ ) = e 2 h ( R ( v , J v , J v , v ) + 2 h ( v , v ) + 2 h ( J v , J v ) + v ( h ) 2 + J v ( h ) 2 | h | 2 ) .

Combining the above, we obtain (b). ∎

Acknowledgements

The authors would like to thank Valentino Tosatti for discussion. The authors would also like to thank Xiaokui Yang for his interest. The authors would like to thank the referee for useful comments for improving the readability.

References

[1] M. Berger, Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes, Bull. Soc. Math. France 83 (1955), 279–330. 10.24033/bsmf.1464Suche in Google Scholar

[2] F. Campana, Connexité rationnelle des variétés de Fano, Ann. Sci. Éc. Norm. Supér. (4) 25 (1992), no. 5, 539–545. 10.24033/asens.1658Suche in Google Scholar

[3] F. Campana, J.-P. Demailly and T. Peternell, Rationally connected manifolds and semipositivity of the Ricci curvature, Recent advances in algebraic geometry, London Math. Soc. Lecture Note Ser. 417, Cambridge University, Cambridge (2015), 71–91. 10.1017/CBO9781107416000.006Suche in Google Scholar

[4] J. Cheeger and D. Gromoll, The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differential Geom. 6 (1971/72), 119–128. 10.4310/jdg/1214430220Suche in Google Scholar

[5] O. Chodosh, M. Eichmair and V. Moraru, A splitting theorem for scalar curvature, Comm. Pure Appl. Math. 72 (2019), no. 6, 1231–1242. 10.1002/cpa.21803Suche in Google Scholar

[6] J. Chu, M.-C. Lee and L.-F. Tam, Kähler manifolds and mixed curvature, Trans. Amer. Math. Soc. 375 (2022), no. 11, 7925–7944. 10.1090/tran/8735Suche in Google Scholar

[7] G. de Rham, Sur la reductibilité d’un espace de Riemann, Comment. Math. Helv. 26 (1952), 328–344.10.1007/BF02564308Suche in Google Scholar

[8] T. Frankel, Manifolds with positive curvature, Pacific J. Math. 11 (1961), 165–174. 10.2140/pjm.1961.11.165Suche in Google Scholar

[9] R. Hartshorne, Ample subvarieties of algebraic varieties, Lecture Notes in Math. 156, Springer, Berlin 1970. 10.1007/BFb0067839Suche in Google Scholar

[10] G. Heier and B. Wong, On projective Kähler manifolds of partially positive curvature and rational connectedness, Doc. Math. 25 (2020), 219–238. 10.4171/dm/745Suche in Google Scholar

[11] A. Howard, B. Smyth and H. Wu, On compact Kähler manifolds of nonnegative bisectional curvature. I, Acta Math. 147 (1981), no. 1–2, 51–56. 10.1007/BF02392867Suche in Google Scholar

[12] S. Kobayashi, On compact Kähler manifolds with positive definite Ricci tensor, Ann. of Math. (2) 74 (1961), 570–574. 10.2307/1970298Suche in Google Scholar

[13] K. Kodaira, On Kähler varieties of restricted type (an intrinsic characterization of algebraic varieties), Ann. of Math. (2) 60 (1954), 28–48. 10.2307/1969701Suche in Google Scholar

[14] J. Kollár, Y. Miyaoka and S. Mori, Rational connectedness and boundedness of Fano manifolds, J. Differential Geom. 36 (1992), no. 3, 765–779. 10.4310/jdg/1214453188Suche in Google Scholar

[15] M.-C. Lee and K.-F. Li, Deformation of Hermitian metrics, Math. Res. Lett. 29 (2022), no. 5, 1485–1497. 10.4310/MRL.2022.v29.n5.a8Suche in Google Scholar

[16] G. Liu, 3-manifolds with nonnegative Ricci curvature, Invent. Math. 193 (2013), no. 2, 367–375. 10.1007/s00222-012-0428-xSuche in Google Scholar

[17] S. Matsumura, On the image of MRC fibrations of projective manifolds with semi-positive holomorphic sectional curvature, Pure Appl. Math. Q. 16 (2020), no. 5, 1419–1439. 10.4310/PAMQ.2020.v16.n5.a3Suche in Google Scholar

[18] S. Matsumura, On projective manifolds with semi-positive holomorphic sectional curvature, Amer. J. Math. 144 (2022), no. 3, 747–777. 10.1353/ajm.2022.0015Suche in Google Scholar

[19] S. Matsumura, Fundamental groups of compact Kähler manifolds with semi-positive holomorphic sectional curvature, preprint (2025), https://arxiv.org/abs/2502.00367. Suche in Google Scholar

[20] N. Mok, The uniformization theorem for compact Kähler manifolds of nonnegative holomorphic bisectional curvature, J. Differential Geom. 27 (1988), no. 2, 179–214. 10.4310/jdg/1214441778Suche in Google Scholar

[21] S. Mori, Projective manifolds with ample tangent bundles, Ann. of Math. (2) 110 (1979), no. 3, 593–606. 10.2307/1971241Suche in Google Scholar

[22] L. Ni, Liouville theorems and a Schwarz lemma for holomorphic mappings between Kähler manifolds, Comm. Pure Appl. Math. 74 (2021), no. 5, 1100–1126. 10.1002/cpa.21987Suche in Google Scholar

[23] L. Ni, The fundamental group, rational connectedness and the positivity of Kähler manifolds, J. reine angew. Math. 774 (2021), 267–299. 10.1515/crelle-2020-0040Suche in Google Scholar

[24] L. Ni and F. Zheng, Comparison and vanishing theorems for Kähler manifolds, Calc. Var. Partial Differential Equations 57 (2018), no. 6, Paper No. 151. 10.1007/s00526-018-1431-xSuche in Google Scholar

[25] P. Petersen, Riemannian geometry, 3rd ed., Grad. Texts in Math. 171, Springer, Cham 2016. 10.1007/978-3-319-26654-1Suche in Google Scholar

[26] Y. T. Siu and S. T. Yau, Compact Kähler manifolds of positive bisectional curvature, Invent. Math. 59 (1980), no. 2, 189–204. 10.1007/BF01390043Suche in Google Scholar

[27] K. Tang, Quasi-positive curvature and vanishing theorems, preprint (2024), https://arxiv.org/abs/2405.03895. Suche in Google Scholar

[28] X. Yang, RC-positivity, rational connectedness and Yau’s conjecture, Camb. J. Math. 6 (2018), no. 2, 183–212. 10.4310/CJM.2018.v6.n2.a2Suche in Google Scholar

[29] X. Yang, Compact Kähler manifolds with quasi-positive second Chern–Ricci curvature, Comm. Anal. Geom. 32 (2024), no. 10, 2717–2734. 10.4310/CAG.241231025605Suche in Google Scholar

[30] S. T. Yau, Problem section, Seminar on differential geometry, Ann. of Math. Stud. 102, Princeton University, Princeton (1982), 669–706. 10.1515/9781400881918-035Suche in Google Scholar

[31] S. Zhang and X. Zhang, On the structure of compact Kähler manifolds with nonnegative holomorphic sectional curvature, preprint (2023), https://arxiv.org/abs/2311.18779. Suche in Google Scholar

[32] S. Zhang and X. Zhang, Compact Kähler manifolds with partially semi-positive curvature, preprint (2025), https://arxiv.org/abs/2504.13155. Suche in Google Scholar

Received: 2025-03-06
Revised: 2025-06-14
Published Online: 2025-08-21
Published in Print: 2025-10-01

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 12.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/crelle-2025-0054/html
Button zum nach oben scrollen